#include #include #include #include #include #include #define API_HAL_OS_CLK_FREQUENCY 32768 #define API_HAL_OS_TICK_PER_SECOND 1024 #define API_HAL_OS_CLK_PER_TICK (API_HAL_OS_CLK_FREQUENCY / API_HAL_OS_TICK_PER_SECOND) #define API_HAL_OS_TICK_PER_EPOCH (API_HAL_OS_TIMER_MAX / API_HAL_OS_CLK_PER_TICK) #define API_HAL_OS_MAX_SLEEP (API_HAL_OS_TICK_PER_EPOCH - 1) #ifdef API_HAL_OS_DEBUG #include #define LED_SLEEP_PORT GPIOA #define LED_SLEEP_PIN LL_GPIO_PIN_7 #define LED_TICK_PORT GPIOA #define LED_TICK_PIN LL_GPIO_PIN_6 #define LED_SECOND_PORT GPIOA #define LED_SECOND_PIN LL_GPIO_PIN_4 void api_hal_os_timer_callback() { LL_GPIO_TogglePin(LED_SECOND_PORT, LED_SECOND_PIN); } #endif volatile uint32_t api_hal_os_skew = 0; void api_hal_os_init() { LL_DBGMCU_APB1_GRP2_FreezePeriph(LL_DBGMCU_APB1_GRP2_LPTIM2_STOP); api_hal_os_timer_init(); api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK); #ifdef API_HAL_OS_DEBUG LL_GPIO_SetPinMode(LED_SLEEP_PORT, LED_SLEEP_PIN, LL_GPIO_MODE_OUTPUT); LL_GPIO_SetPinMode(LED_TICK_PORT, LED_TICK_PIN, LL_GPIO_MODE_OUTPUT); LL_GPIO_SetPinMode(LED_SECOND_PORT, LED_SECOND_PIN, LL_GPIO_MODE_OUTPUT); osTimerId_t second_timer = osTimerNew(api_hal_os_timer_callback, osTimerPeriodic, NULL, NULL); osTimerStart(second_timer, 1024); #endif } void LPTIM2_IRQHandler(void) { // Autoreload if(LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER)) { LL_LPTIM_ClearFLAG_ARRM(API_HAL_OS_TIMER); if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { #ifdef API_HAL_OS_DEBUG LL_GPIO_TogglePin(LED_TICK_PORT, LED_TICK_PIN); #endif xPortSysTickHandler(); } } if(LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER)) { LL_LPTIM_ClearFLAG_CMPM(API_HAL_OS_TIMER); } } static inline uint32_t api_hal_os_sleep(TickType_t expected_idle_ticks) { // Stop ticks api_hal_os_timer_reset(); LL_SYSTICK_DisableIT(); // Start wakeup timer api_hal_os_timer_single(expected_idle_ticks * API_HAL_OS_CLK_PER_TICK); #ifdef API_HAL_OS_DEBUG LL_GPIO_ResetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN); #endif // Go to sleep mode api_hal_power_sleep(); #ifdef API_HAL_OS_DEBUG LL_GPIO_SetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN); #endif // Calculate how much time we spent in the sleep uint32_t after_cnt = api_hal_os_timer_get_cnt() + api_hal_os_skew; uint32_t after_tick = after_cnt / API_HAL_OS_CLK_PER_TICK; api_hal_os_skew = after_cnt % API_HAL_OS_CLK_PER_TICK; bool cmpm = LL_LPTIM_IsActiveFlag_CMPM(API_HAL_OS_TIMER); bool arrm = LL_LPTIM_IsActiveFlag_ARRM(API_HAL_OS_TIMER); if (cmpm && arrm) after_tick += expected_idle_ticks; // Prepare tick timer for new round api_hal_os_timer_reset(); // Resume ticks LL_SYSTICK_EnableIT(); api_hal_os_timer_continuous(API_HAL_OS_CLK_PER_TICK); return after_tick; } void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) { if(!api_hal_power_sleep_available()) { __WFI(); return; } // Limit mount of ticks to maximum that timer can count if (expected_idle_ticks > API_HAL_OS_MAX_SLEEP) { expected_idle_ticks = API_HAL_OS_MAX_SLEEP; } // Stop IRQ handling, no one should disturb us till we finish __disable_irq(); // Confirm OS that sleep is still possible if (eTaskConfirmSleepModeStatus() == eAbortSleep) { __enable_irq(); return; } // Sleep and track how much ticks we spent sleeping uint32_t completed_ticks = api_hal_os_sleep(expected_idle_ticks); // Reenable IRQ __enable_irq(); // Notify system about time spent in sleep if (completed_ticks > 0) { if (completed_ticks > expected_idle_ticks) { vTaskStepTick(expected_idle_ticks); } else { vTaskStepTick(completed_ticks); } } } void vApplicationStackOverflowHook(TaskHandle_t xTask, signed char *pcTaskName) { asm("bkpt 1"); while(1) {}; }