#include "subghz_protocol_ido.h" struct SubGhzProtocolIDo { SubGhzProtocolCommon common; }; typedef enum { IDoDecoderStepReset = 0, IDoDecoderStepFoundPreambula, IDoDecoderStepSaveDuration, IDoDecoderStepCheckDuration, } IDoDecoderStep; SubGhzProtocolIDo* subghz_protocol_ido_alloc(void) { SubGhzProtocolIDo* instance = furi_alloc(sizeof(SubGhzProtocolIDo)); instance->common.name = "iDo 117/111"; // PT4301-X"; instance->common.code_min_count_bit_for_found = 48; instance->common.te_short = 450; instance->common.te_long = 1450; instance->common.te_delta = 150; instance->common.type_protocol = SubGhzProtocolCommonTypeDynamic; instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_ido_to_str; instance->common.to_load_protocol = (SubGhzProtocolCommonLoadFromRAW)subghz_decoder_ido_to_load_protocol; return instance; } void subghz_protocol_ido_free(SubGhzProtocolIDo* instance) { furi_assert(instance); free(instance); } /** Send bit * * @param instance - SubGhzProtocolIDo instance * @param bit - bit */ void subghz_protocol_ido_send_bit(SubGhzProtocolIDo* instance, uint8_t bit) { if(bit) { //send bit 1 SUBGHZ_TX_PIN_HIGH(); delay_us(instance->common.te_short); SUBGHZ_TX_PIN_LOW(); delay_us(instance->common.te_short); } else { //send bit 0 SUBGHZ_TX_PIN_HIGH(); delay_us(instance->common.te_short); SUBGHZ_TX_PIN_LOW(); delay_us(instance->common.te_long); } } void subghz_protocol_ido_send_key( SubGhzProtocolIDo* instance, uint64_t key, uint8_t bit, uint8_t repeat) { while(repeat--) { SUBGHZ_TX_PIN_HIGH(); //Send header delay_us(instance->common.te_short * 10); SUBGHZ_TX_PIN_LOW(); delay_us(instance->common.te_short * 10); //Send key data for(uint8_t i = bit; i > 0; i--) { subghz_protocol_ido_send_bit(instance, bit_read(key, i - 1)); } } } void subghz_protocol_ido_reset(SubGhzProtocolIDo* instance) { instance->common.parser_step = IDoDecoderStepReset; } /** Analysis of received data * * @param instance SubGhzProtocolIDo instance */ void subghz_protocol_ido_check_remote_controller(SubGhzProtocolIDo* instance) { uint64_t code_found_reverse = subghz_protocol_common_reverse_key( instance->common.code_last_found, instance->common.code_last_count_bit); uint32_t code_fix = code_found_reverse & 0xFFFFFF; instance->common.serial = code_fix & 0xFFFFF; instance->common.btn = (code_fix >> 20) & 0x0F; } void subghz_protocol_ido_parse(SubGhzProtocolIDo* instance, bool level, uint32_t duration) { switch(instance->common.parser_step) { case IDoDecoderStepReset: if((level) && (DURATION_DIFF(duration, instance->common.te_short * 10) < instance->common.te_delta * 5)) { instance->common.parser_step = IDoDecoderStepFoundPreambula; } else { instance->common.parser_step = IDoDecoderStepReset; } break; case IDoDecoderStepFoundPreambula: if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 10) < instance->common.te_delta * 5)) { //Found Preambula instance->common.parser_step = IDoDecoderStepSaveDuration; instance->common.code_found = 0; instance->common.code_count_bit = 0; } else { instance->common.parser_step = IDoDecoderStepReset; } break; case IDoDecoderStepSaveDuration: if(level) { if(duration >= (instance->common.te_short * 5 + instance->common.te_delta)) { instance->common.parser_step = IDoDecoderStepFoundPreambula; if(instance->common.code_count_bit >= instance->common.code_min_count_bit_for_found) { instance->common.code_last_found = instance->common.code_found; instance->common.code_last_count_bit = instance->common.code_count_bit; if(instance->common.callback) instance->common.callback( (SubGhzProtocolCommon*)instance, instance->common.context); } instance->common.code_found = 0; instance->common.code_count_bit = 0; break; } else { instance->common.te_last = duration; instance->common.parser_step = IDoDecoderStepCheckDuration; } } else { instance->common.parser_step = IDoDecoderStepReset; } break; case IDoDecoderStepCheckDuration: if(!level) { if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) < instance->common.te_delta) && (DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta * 3)) { subghz_protocol_common_add_bit(&instance->common, 0); instance->common.parser_step = IDoDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->common.te_last, instance->common.te_short) < instance->common.te_delta * 3) && (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) { subghz_protocol_common_add_bit(&instance->common, 1); instance->common.parser_step = IDoDecoderStepSaveDuration; } else { instance->common.parser_step = IDoDecoderStepReset; } } else { instance->common.parser_step = IDoDecoderStepReset; } break; } } void subghz_protocol_ido_to_str(SubGhzProtocolIDo* instance, string_t output) { subghz_protocol_ido_check_remote_controller(instance); uint64_t code_found_reverse = subghz_protocol_common_reverse_key( instance->common.code_last_found, instance->common.code_last_count_bit); uint32_t code_fix = code_found_reverse & 0xFFFFFF; uint32_t code_hop = (code_found_reverse >> 24) & 0xFFFFFF; string_cat_printf( output, "%s %dbit\r\n" "Key:0x%lX%08lX\r\n" "Fix:%06lX \r\n" "Hop:%06lX \r\n" "Sn:%05lX Btn:%lX\r\n", instance->common.name, instance->common.code_last_count_bit, (uint32_t)(instance->common.code_last_found >> 32), (uint32_t)instance->common.code_last_found, code_fix, code_hop, instance->common.serial, instance->common.btn); } void subghz_decoder_ido_to_load_protocol(SubGhzProtocolIDo* instance, void* context) { furi_assert(context); furi_assert(instance); SubGhzProtocolCommonLoad* data = context; instance->common.code_last_found = data->code_found; instance->common.code_last_count_bit = data->code_count_bit; subghz_protocol_ido_check_remote_controller(instance); }