#include "subghz_protocol_princeton.h" /* * Help * https://phreakerclub.com/447 * */ #define SUBGHZ_PT_SHORT 300 #define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3) #define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30) #define SUBGHZ_PT_COUNT_KEY_433 9 #define SUBGHZ_PT_TIMEOUT_433 900 #define SUBGHZ_PT_COUNT_KEY_868 9 #define SUBGHZ_PT_TIMEOUT_868 14000 #define TAG "SubghzPrinceton" struct SubGhzEncoderPrinceton { uint32_t key; uint16_t te; size_t repeat; size_t front; size_t count_key; size_t count_key_package; uint32_t time_high; uint32_t time_low; uint32_t timeout; uint32_t time_stop; }; typedef enum { PrincetonDecoderStepReset = 0, PrincetonDecoderStepSaveDuration, PrincetonDecoderStepCheckDuration, } PrincetonDecoderStep; SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() { SubGhzEncoderPrinceton* instance = malloc(sizeof(SubGhzEncoderPrinceton)); return instance; } void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) { furi_assert(instance); free(instance); } void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) { SubGhzDecoderPrinceton* pricenton = decoder; if((pricenton->te) != 0) { instance->te = pricenton->te; } else { instance->te = SUBGHZ_PT_SHORT; } } void subghz_encoder_princeton_stop(SubGhzEncoderPrinceton* instance, uint32_t time_stop) { instance->time_stop = time_stop; } void subghz_encoder_princeton_set( SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat, uint32_t frequency) { furi_assert(instance); instance->te = SUBGHZ_PT_SHORT; instance->key = key; instance->repeat = repeat + 1; instance->front = 48; instance->time_high = 0; instance->time_low = 0; if(frequency < 700000000) { instance->count_key_package = SUBGHZ_PT_COUNT_KEY_433; instance->timeout = SUBGHZ_PT_TIMEOUT_433; } else { instance->count_key_package = SUBGHZ_PT_COUNT_KEY_868; instance->timeout = SUBGHZ_PT_TIMEOUT_868; } instance->count_key = instance->count_key_package + 3; if((millis() - instance->time_stop) < instance->timeout) { instance->time_stop = (instance->timeout - (millis() - instance->time_stop)) * 1000; } else { instance->time_stop = 0; } } size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) { furi_assert(instance); return instance->repeat; } void subghz_encoder_princeton_print_log(void* context) { SubGhzEncoderPrinceton* instance = context; float duty_cycle = ((float)instance->time_high / (instance->time_high + instance->time_low)) * 100; FURI_LOG_I( TAG "Encoder", "Radio tx_time=%dus ON=%dus, OFF=%dus, DutyCycle=%d,%d%%", instance->time_high + instance->time_low, instance->time_high, instance->time_low, (uint32_t)duty_cycle, (uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100)); } LevelDuration subghz_encoder_princeton_yield(void* context) { SubGhzEncoderPrinceton* instance = context; if(instance->repeat == 0) { subghz_encoder_princeton_print_log(instance); return level_duration_reset(); } size_t bit = instance->front / 2; bool level = !(instance->front % 2); LevelDuration ret; if(bit < 24) { uint8_t byte = bit / 8; uint8_t bit_in_byte = bit % 8; bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1; if(value) { ret = level_duration_make(level, level ? instance->te * 3 : instance->te); if(level) instance->time_high += instance->te * 3; else instance->time_low += instance->te; } else { ret = level_duration_make(level, level ? instance->te : instance->te * 3); if(level) instance->time_high += instance->te; else instance->time_low += instance->te * 3; } } else { if(instance->time_stop) { ret = level_duration_make(level, level ? instance->te : instance->time_stop); if(level) instance->time_high += instance->te; else { instance->time_low += instance->time_stop; instance->time_stop = 0; instance->front = 47; } } else { if(--instance->count_key != 0) { ret = level_duration_make(level, level ? instance->te : instance->te * 30); if(level) instance->time_high += instance->te; else instance->time_low += instance->te * 30; } else { instance->count_key = instance->count_key_package + 2; instance->front = 48; ret = level_duration_make(level, level ? instance->te : instance->timeout * 1000); if(level) instance->time_high += instance->te; else instance->time_low += instance->timeout * 1000; } } } instance->front++; if(instance->front == 50) { instance->repeat--; instance->front = 0; } return ret; } SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) { SubGhzDecoderPrinceton* instance = malloc(sizeof(SubGhzDecoderPrinceton)); instance->te = SUBGHZ_PT_SHORT; instance->common.name = "Princeton"; instance->common.code_min_count_bit_for_found = 24; instance->common.te_short = 400; //150; instance->common.te_long = 1200; //450; instance->common.te_delta = 250; //50; instance->common.type_protocol = SubGhzProtocolCommonTypeStatic; instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str; instance->common.to_save_file = (SubGhzProtocolCommonSaveFile)subghz_decoder_princeton_to_save_file; instance->common.to_load_protocol_from_file = (SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file; instance->common.to_load_protocol = (SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol; instance->common.get_upload_protocol = (SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key; return instance; } void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) { furi_assert(instance); free(instance); } uint16_t subghz_protocol_princeton_get_te(void* context) { SubGhzDecoderPrinceton* instance = context; return instance->te; } bool subghz_protocol_princeton_send_key( SubGhzDecoderPrinceton* instance, SubGhzProtocolCommonEncoder* encoder) { furi_assert(instance); furi_assert(encoder); size_t index = 0; encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2; if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false; //Send key data for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) { if(bit_read(instance->common.code_last_found, i - 1)) { //send bit 1 encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te); } else { //send bit 0 encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3); } } //Send Stop bit encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te); //Send PT_GUARD encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30); return true; } void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) { instance->common.parser_step = PrincetonDecoderStepReset; } void subghz_decoder_princeton_parse( SubGhzDecoderPrinceton* instance, bool level, uint32_t duration) { switch(instance->common.parser_step) { case PrincetonDecoderStepReset: if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) < instance->common.te_delta * 36)) { //Found Preambula instance->common.parser_step = PrincetonDecoderStepSaveDuration; instance->common.code_found = 0; instance->common.code_count_bit = 0; instance->te = 0; } break; case PrincetonDecoderStepSaveDuration: //save duration if(level) { instance->common.te_last = duration; instance->te += duration; instance->common.parser_step = PrincetonDecoderStepCheckDuration; } break; case PrincetonDecoderStepCheckDuration: if(!level) { if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) { instance->common.parser_step = PrincetonDecoderStepSaveDuration; if(instance->common.code_count_bit == instance->common.code_min_count_bit_for_found) { instance->te /= (instance->common.code_count_bit * 4 + 1); instance->common.code_last_found = instance->common.code_found; instance->common.code_last_count_bit = instance->common.code_count_bit; instance->common.serial = instance->common.code_found >> 4; instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F; if(instance->common.callback) instance->common.callback( (SubGhzProtocolCommon*)instance, instance->common.context); } instance->common.code_found = 0; instance->common.code_count_bit = 0; instance->te = 0; break; } instance->te += duration; if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) < instance->common.te_delta) && (DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta * 3)) { subghz_protocol_common_add_bit(&instance->common, 0); instance->common.parser_step = PrincetonDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->common.te_last, instance->common.te_long) < instance->common.te_delta * 3) && (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) { subghz_protocol_common_add_bit(&instance->common, 1); instance->common.parser_step = PrincetonDecoderStepSaveDuration; } else { instance->common.parser_step = PrincetonDecoderStepReset; } } else { instance->common.parser_step = PrincetonDecoderStepReset; } break; } } void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) { uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_common_reverse_key( instance->common.code_last_found, instance->common.code_last_count_bit); uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s %dbit\r\n" "Key:0x%08lX\r\n" "Yek:0x%08lX\r\n" "Sn:0x%05lX BTN:%02X\r\n" "Te:%dus\r\n", instance->common.name, instance->common.code_last_count_bit, code_found_lo, code_found_reverse_lo, instance->common.serial, instance->common.btn, instance->te); } bool subghz_decoder_princeton_to_save_file( SubGhzDecoderPrinceton* instance, FlipperFormat* flipper_format) { bool res = subghz_protocol_common_to_save_file((SubGhzProtocolCommon*)instance, flipper_format); if(res) { res = flipper_format_write_uint32(flipper_format, "TE", &instance->te, 1); if(!res) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Te"); } return res; } bool subghz_decoder_princeton_to_load_protocol_from_file( FlipperFormat* flipper_format, SubGhzDecoderPrinceton* instance, const char* file_path) { bool loaded = subghz_protocol_common_to_load_protocol_from_file( (SubGhzProtocolCommon*)instance, flipper_format); if(loaded) { loaded = flipper_format_read_uint32(flipper_format, "TE", (uint32_t*)&instance->te, 1); if(!loaded) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing TE"); } return loaded; } void subghz_decoder_princeton_to_load_protocol(SubGhzDecoderPrinceton* instance, void* context) { furi_assert(context); furi_assert(instance); SubGhzProtocolCommonLoad* data = context; instance->common.code_last_found = data->code_found; instance->common.code_last_count_bit = data->code_count_bit; instance->te = data->param1; instance->common.serial = instance->common.code_last_found >> 4; instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F; }