#include "furi/check.h" #include "irda.h" #include "irda_common_i.h" #include #include #include "irda_i.h" static void irda_common_decoder_reset_state(IrdaCommonDecoder* common_decoder); static bool irda_check_preamble(IrdaCommonDecoder* decoder) { furi_assert(decoder); bool result = false; bool start_level = (decoder->level + decoder->timings_cnt + 1) % 2; // align to start at Mark timing if (!start_level) { if (decoder->timings_cnt > 0) { --decoder->timings_cnt; shift_left_array(decoder->timings, decoder->timings_cnt, 1); } } if (decoder->protocol->timings.preamble_mark == 0) { return true; } while ((!result) && (decoder->timings_cnt >= 2)) { float preamble_tolerance = decoder->protocol->timings.preamble_tolerance; uint16_t preamble_mark = decoder->protocol->timings.preamble_mark; uint16_t preamble_space = decoder->protocol->timings.preamble_space; if ((MATCH_PREAMBLE_TIMING(decoder->timings[0], preamble_mark, preamble_tolerance)) && (MATCH_PREAMBLE_TIMING(decoder->timings[1], preamble_space, preamble_tolerance))) { result = true; } decoder->timings_cnt -= 2; shift_left_array(decoder->timings, decoder->timings_cnt, 2); } return result; } /* Pulse Distance-Width Modulation */ IrdaStatus irda_common_decode_pdwm(IrdaCommonDecoder* decoder) { furi_assert(decoder); uint32_t* timings = decoder->timings; uint16_t index = 0; uint8_t shift = 0; IrdaStatus status = IrdaStatusError; uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance; uint16_t bit1_mark = decoder->protocol->timings.bit1_mark; uint16_t bit1_space = decoder->protocol->timings.bit1_space; uint16_t bit0_mark = decoder->protocol->timings.bit0_mark; uint16_t bit0_space = decoder->protocol->timings.bit0_space; while (1) { // Stop bit if ((decoder->databit_cnt == decoder->protocol->databit_len) && (decoder->timings_cnt == 1)) { if (MATCH_BIT_TIMING(timings[0], bit1_mark, bit_tolerance)) { decoder->timings_cnt = 0; status = IrdaStatusReady; } else { status = IrdaStatusError; } break; } if (decoder->timings_cnt >= 2) { index = decoder->databit_cnt / 8; shift = decoder->databit_cnt % 8; // LSB first if (!shift) decoder->data[index] = 0; if (MATCH_BIT_TIMING(timings[0], bit1_mark, bit_tolerance) && MATCH_BIT_TIMING(timings[1], bit1_space, bit_tolerance)) { decoder->data[index] |= (0x1 << shift); // add 1 } else if (MATCH_BIT_TIMING(timings[0], bit0_mark, bit_tolerance) && MATCH_BIT_TIMING(timings[1], bit0_space, bit_tolerance)) { (void) decoder->data[index]; // add 0 } else { status = IrdaStatusError; break; } ++decoder->databit_cnt; decoder->timings_cnt -= 2; shift_left_array(decoder->timings, decoder->timings_cnt, 2); } else { status = IrdaStatusOk; break; } } return status; } /* level switch detection goes in middle of time-quant */ IrdaStatus irda_common_decode_manchester(IrdaCommonDecoder* decoder) { furi_assert(decoder); IrdaStatus status = IrdaStatusOk; uint16_t bit = decoder->protocol->timings.bit1_mark; uint16_t tolerance = decoder->protocol->timings.bit_tolerance; while (decoder->timings_cnt) { uint32_t timing = decoder->timings[0]; bool* switch_detect = &decoder->switch_detect; furi_assert((*switch_detect == true) || (*switch_detect == false)); bool single_timing = MATCH_BIT_TIMING(timing, bit, tolerance); bool double_timing = MATCH_BIT_TIMING(timing, 2*bit, tolerance); if(!single_timing && !double_timing) { status = IrdaStatusError; break; } if ((decoder->protocol->manchester_start_from_space) && (decoder->databit_cnt == 0)) { *switch_detect = 1; /* fake as we were previously in the middle of time-quant */ decoder->data[0] = 0; /* first captured timing should be Mark */ ++decoder->databit_cnt; } if (*switch_detect == 0) { if (double_timing) { status = IrdaStatusError; break; } /* only single timing - level switch required in the middle of time-quant */ *switch_detect = 1; } else { /* double timing means we in the middle of time-quant again */ if (single_timing) *switch_detect = 0; } --decoder->timings_cnt; shift_left_array(decoder->timings, decoder->timings_cnt, 1); status = IrdaStatusOk; bool level = (decoder->level + decoder->timings_cnt) % 2; if (decoder->databit_cnt < decoder->protocol->databit_len) { if (*switch_detect) { uint8_t index = decoder->databit_cnt / 8; uint8_t shift = decoder->databit_cnt % 8; // LSB first if (!shift) decoder->data[index] = 0; decoder->data[index] |= (level << shift); ++decoder->databit_cnt; } if (decoder->databit_cnt == decoder->protocol->databit_len) { if (level) { status = IrdaStatusReady; break; } } } else { furi_assert(level); /* cover case: sequence should be stopped after last bit was received */ if (single_timing) { status = IrdaStatusReady; break; } else { status = IrdaStatusError; } } } return status; } IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t duration) { furi_assert(decoder); IrdaMessage* message = 0; IrdaStatus status = IrdaStatusError; if (decoder->level == level) { decoder->timings_cnt = 0; } decoder->level = level; // start with low level (Space timing) decoder->timings[decoder->timings_cnt] = duration; decoder->timings_cnt++; furi_check(decoder->timings_cnt <= sizeof(decoder->timings)); while(1) { switch (decoder->state) { case IrdaCommonDecoderStateWaitPreamble: if (irda_check_preamble(decoder)) { decoder->state = IrdaCommonDecoderStateDecode; decoder->databit_cnt = 0; decoder->switch_detect = false; continue; } break; case IrdaCommonDecoderStateDecode: status = decoder->protocol->decode(decoder); if (status == IrdaStatusReady) { if (decoder->protocol->interpret(decoder)) { message = &decoder->message; decoder->state = IrdaCommonDecoderStateProcessRepeat; } else { decoder->state = IrdaCommonDecoderStateWaitPreamble; } } else if (status == IrdaStatusError) { irda_common_decoder_reset_state(decoder); continue; } break; case IrdaCommonDecoderStateProcessRepeat: if (!decoder->protocol->decode_repeat) { decoder->state = IrdaCommonDecoderStateWaitPreamble; continue; } status = decoder->protocol->decode_repeat(decoder); if (status == IrdaStatusError) { irda_common_decoder_reset_state(decoder); continue; } else if (status == IrdaStatusReady) { decoder->message.repeat = true; message = &decoder->message; } break; } break; } return message; } void* irda_common_decoder_alloc(const IrdaCommonProtocolSpec* protocol) { furi_assert(protocol); uint32_t alloc_size = sizeof(IrdaCommonDecoder) + protocol->databit_len / 8 + !!(protocol->databit_len % 8); IrdaCommonDecoder* decoder = furi_alloc(alloc_size); memset(decoder, 0, alloc_size); decoder->protocol = protocol; decoder->level = true; return decoder; } void irda_common_decoder_set_context(void* decoder, void* context) { IrdaCommonDecoder* common_decoder = decoder; common_decoder->context = context; } void irda_common_decoder_free(void* decoder) { furi_assert(decoder); free(decoder); } void irda_common_decoder_reset_state(IrdaCommonDecoder* common_decoder) { common_decoder->state = IrdaCommonDecoderStateWaitPreamble; common_decoder->databit_cnt = 0; common_decoder->switch_detect = false; common_decoder->message.protocol = IrdaProtocolUnknown; if ((common_decoder->protocol->timings.preamble_mark == 0) && (common_decoder->timings_cnt > 0)) { --common_decoder->timings_cnt; shift_left_array(common_decoder->timings, common_decoder->timings_cnt, 1); } } void irda_common_decoder_reset(void* decoder) { furi_assert(decoder); IrdaCommonDecoder* common_decoder = decoder; irda_common_decoder_reset_state(common_decoder); common_decoder->timings_cnt = 0; }