#include "subghz_static.h" #include "subghz_i.h" #include #include #include #include #include static const uint8_t subghz_static_keys[][4] = { {0x74, 0xBA, 0xDE}, {0x74, 0xBA, 0xDD}, {0x74, 0xBA, 0xDB}, {0xE3, 0x4A, 0x4E}, }; #define SUBGHZ_PT_ONE 376 #define SUBGHZ_PT_ZERO (SUBGHZ_PT_ONE * 3) #define SUBGHZ_PT_GUARD 10600 struct SubghzStatic { View* view; }; typedef enum { SubghzStaticStatusRx, SubghzStaticStatusTx, } SubghzStaticStatus; typedef struct { uint8_t frequency; uint32_t real_frequency; ApiHalSubGhzPath path; uint8_t button; } SubghzStaticModel; void subghz_static_draw(Canvas* canvas, SubghzStaticModel* model) { char buffer[64]; canvas_set_color(canvas, ColorBlack); canvas_set_font(canvas, FontPrimary); canvas_draw_str(canvas, 2, 12, "CC1101 Static"); canvas_set_font(canvas, FontSecondary); // Frequency snprintf( buffer, sizeof(buffer), "Freq: %03ld.%03ld.%03ld Hz", model->real_frequency / 1000000 % 1000, model->real_frequency / 1000 % 1000, model->real_frequency % 1000); canvas_draw_str(canvas, 2, 24, buffer); // Path char* path_name = "Unknown"; if(model->path == ApiHalSubGhzPathIsolate) { path_name = "isolate"; } else if(model->path == ApiHalSubGhzPath433) { path_name = "433MHz"; } else if(model->path == ApiHalSubGhzPath315) { path_name = "315MHz"; } else if(model->path == ApiHalSubGhzPath868) { path_name = "868MHz"; } snprintf(buffer, sizeof(buffer), "Path: %d - %s", model->path, path_name); canvas_draw_str(canvas, 2, 36, buffer); snprintf(buffer, sizeof(buffer), "Key: %d", model->button); canvas_draw_str(canvas, 2, 48, buffer); } bool subghz_static_input(InputEvent* event, void* context) { furi_assert(context); SubghzStatic* subghz_static = context; if(event->key == InputKeyBack) { return false; } with_view_model( subghz_static->view, (SubghzStaticModel * model) { bool reconfigure = false; if(event->type == InputTypeShort) { if(event->key == InputKeyLeft) { if(model->frequency > 0) model->frequency--; reconfigure = true; } else if(event->key == InputKeyRight) { if(model->frequency < subghz_frequencies_count - 1) model->frequency++; reconfigure = true; } else if(event->key == InputKeyDown) { if(model->button > 0) model->button--; } else if(event->key == InputKeyUp) { if(model->button < 3) model->button++; } model->path = subghz_frequencies[model->frequency].path; } if(reconfigure) { api_hal_subghz_idle(); model->real_frequency = api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency); api_hal_subghz_set_path(model->path); api_hal_subghz_tx(); } if(event->key == InputKeyOk) { if(event->type == InputTypePress) { const uint8_t* key = subghz_static_keys[model->button]; NotificationApp* notification = furi_record_open("notification"); notification_message_block(notification, &sequence_set_red_255); __disable_irq(); for(uint8_t r = 0; r < 20; r++) { //Payload for(uint8_t i = 0; i < 24; i++) { uint8_t byte = i / 8; uint8_t bit = i % 8; bool value = (key[byte] >> (7 - bit)) & 1; // Payload send hal_gpio_write(&gpio_cc1101_g0, false); delay_us(value ? SUBGHZ_PT_ONE : SUBGHZ_PT_ZERO); hal_gpio_write(&gpio_cc1101_g0, true); delay_us(value ? SUBGHZ_PT_ZERO : SUBGHZ_PT_ONE); } // Last bit hal_gpio_write(&gpio_cc1101_g0, false); delay_us(SUBGHZ_PT_ONE); hal_gpio_write(&gpio_cc1101_g0, true); // Guard time delay_us(10600); } __enable_irq(); notification_message(notification, &sequence_reset_red); furi_record_close("notification"); } } return true; }); return true; } void subghz_static_enter(void* context) { furi_assert(context); SubghzStatic* subghz_static = context; api_hal_subghz_reset(); api_hal_subghz_load_preset(ApiHalSubGhzPresetOokAsync); hal_gpio_init(&gpio_cc1101_g0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); hal_gpio_write(&gpio_cc1101_g0, true); with_view_model( subghz_static->view, (SubghzStaticModel * model) { model->frequency = subghz_frequencies_433_92; model->real_frequency = api_hal_subghz_set_frequency(subghz_frequencies[model->frequency].frequency); model->path = subghz_frequencies[model->frequency].path; model->button = 0; api_hal_subghz_set_path(model->path); return true; }); api_hal_subghz_tx(); } void subghz_static_exit(void* context) { furi_assert(context); // SubghzStatic* subghz_static = context; // Reinitialize IC to default state api_hal_subghz_init(); } uint32_t subghz_static_back(void* context) { return SubGhzViewMenu; } SubghzStatic* subghz_static_alloc() { SubghzStatic* subghz_static = furi_alloc(sizeof(SubghzStatic)); // View allocation and configuration subghz_static->view = view_alloc(); view_allocate_model(subghz_static->view, ViewModelTypeLockFree, sizeof(SubghzStaticModel)); view_set_context(subghz_static->view, subghz_static); view_set_draw_callback(subghz_static->view, (ViewDrawCallback)subghz_static_draw); view_set_input_callback(subghz_static->view, subghz_static_input); view_set_enter_callback(subghz_static->view, subghz_static_enter); view_set_exit_callback(subghz_static->view, subghz_static_exit); view_set_previous_callback(subghz_static->view, subghz_static_back); return subghz_static; } void subghz_static_free(SubghzStatic* subghz_static) { furi_assert(subghz_static); view_free(subghz_static->view); free(subghz_static); } View* subghz_static_get_view(SubghzStatic* subghz_static) { furi_assert(subghz_static); return subghz_static->view; }