#include "subghz_protocol_keeloq.h" #include "subghz_protocol_keeloq_common.h" #include "../subghz_keystore.h" #include #include struct SubGhzProtocolKeeloq { SubGhzProtocolCommon common; SubGhzKeystore* keystore; const char* manufacture_name; }; SubGhzProtocolKeeloq* subghz_protocol_keeloq_alloc(SubGhzKeystore* keystore) { SubGhzProtocolKeeloq* instance = furi_alloc(sizeof(SubGhzProtocolKeeloq)); instance->keystore = keystore; instance->common.name = "KeeLoq"; instance->common.code_min_count_bit_for_found = 64; instance->common.te_short = 400; instance->common.te_long = 800; instance->common.te_delta = 140; instance->common.type_protocol = TYPE_PROTOCOL_DYNAMIC; instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_keeloq_to_str; instance->common.to_save_string = (SubGhzProtocolCommonGetStrSave)subghz_protocol_keeloq_to_save_str; instance->common.to_load_protocol = (SubGhzProtocolCommonLoad)subghz_protocol_keeloq_to_load_protocol; instance->common.get_upload_protocol = (SubGhzProtocolEncoderCommonGetUpLoad)subghz_protocol_keeloq_send_key; return instance; } void subghz_protocol_keeloq_free(SubGhzProtocolKeeloq* instance) { furi_assert(instance); free(instance); } /** Checking the accepted code against the database manafacture key * * @param instance SubGhzProtocolKeeloq instance * @param fix fix part of the parcel * @param hop hop encrypted part of the parcel * @return true on successful search */ uint8_t subghz_protocol_keeloq_check_remote_controller_selector( SubGhzProtocolKeeloq* instance, uint32_t fix, uint32_t hop) { uint16_t end_serial = (uint16_t)(fix & 0x3FF); uint8_t btn = (uint8_t)(fix >> 28); uint32_t decrypt = 0; uint64_t man_normal_learning; for M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) { switch(manufacture_code->type) { case KEELOQ_LEARNING_SIMPLE: //Simple Learning decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key); if((decrypt >> 28 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) { instance->manufacture_name = string_get_cstr(manufacture_code->name); instance->common.cnt = decrypt & 0x0000FFFF; return 1; } break; case KEELOQ_LEARNING_NORMAL: // Normal_Learning // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37 man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning); if((decrypt >> 28 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) { instance->manufacture_name = string_get_cstr(manufacture_code->name); instance->common.cnt = decrypt & 0x0000FFFF; return 1; } break; case KEELOQ_LEARNING_UNKNOWN: // Simple Learning decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key); if((decrypt >> 28 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) { instance->manufacture_name = string_get_cstr(manufacture_code->name); instance->common.cnt = decrypt & 0x0000FFFF; return 1; } // Check for mirrored man uint64_t man_rev = 0; uint64_t man_rev_byte = 0; for(uint8_t i = 0; i < 64; i += 8) { man_rev_byte = (uint8_t)(manufacture_code->key >> i); man_rev = man_rev | man_rev_byte << (56 - i); } decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev); if((decrypt >> 28 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) { instance->manufacture_name = string_get_cstr(manufacture_code->name); instance->common.cnt = decrypt & 0x0000FFFF; return 1; } //########################### // Normal_Learning // https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37 man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning); if((decrypt >> 28 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) { instance->manufacture_name = string_get_cstr(manufacture_code->name); instance->common.cnt = decrypt & 0x0000FFFF; return 1; } // Check for mirrored man man_rev = 0; man_rev_byte = 0; for(uint8_t i = 0; i < 64; i += 8) { man_rev_byte = (uint8_t)(manufacture_code->key >> i); man_rev = man_rev | man_rev_byte << (56 - i); } man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, man_rev); decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning); if((decrypt >> 28 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x3FF) == end_serial)) { instance->manufacture_name = string_get_cstr(manufacture_code->name); instance->common.cnt = decrypt & 0x0000FFFF; return 1; } break; } } instance->manufacture_name = "Unknown"; instance->common.cnt = 0; return 0; } /** Analysis of received data * * @param instance SubGhzProtocolKeeloq instance */ void subghz_protocol_keeloq_check_remote_controller(SubGhzProtocolKeeloq* instance) { uint64_t key = subghz_protocol_common_reverse_key( instance->common.code_last_found, instance->common.code_last_count_bit); uint32_t key_fix = key >> 32; uint32_t key_hop = key & 0x00000000ffffffff; // Check key AN-Motors if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) { instance->manufacture_name = "AN-Motors"; instance->common.cnt = key_hop >> 16; } else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) { instance->manufacture_name = "HCS101"; instance->common.cnt = key_hop >> 16; } else { subghz_protocol_keeloq_check_remote_controller_selector(instance, key_fix, key_hop); } instance->common.serial = key_fix & 0x0FFFFFFF; instance->common.btn = key_fix >> 28; } void subghz_protocol_keeloq_set_manufacture_name (void* context, const char* manufacture_name){ SubGhzProtocolKeeloq* instance = context; instance->manufacture_name = manufacture_name; } uint64_t subghz_protocol_keeloq_gen_key(void* context) { SubGhzProtocolKeeloq* instance = context; uint32_t fix = instance->common.btn << 28 | instance->common.serial; uint32_t decrypt = instance->common.btn << 28 | (instance->common.serial & 0x3FF) << 16 | instance->common.cnt; uint32_t hop = 0; uint64_t man_normal_learning = 0; int res = 0; for M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) { res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name); if(res == 0) { switch(manufacture_code->type) { case KEELOQ_LEARNING_SIMPLE: //Simple Learning hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key); break; case KEELOQ_LEARNING_NORMAL: //Simple Learning man_normal_learning = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key); hop = subghz_protocol_keeloq_common_encrypt(decrypt, man_normal_learning); break; case KEELOQ_LEARNING_UNKNOWN: hop = 0; //todo break; } break; } } uint64_t yek = (uint64_t)fix << 32 | hop; return subghz_protocol_common_reverse_key(yek, instance->common.code_last_count_bit); } bool subghz_protocol_keeloq_send_key(SubGhzProtocolKeeloq* instance, SubGhzProtocolEncoderCommon* encoder){ furi_assert(instance); furi_assert(encoder); //gen new key instance->common.cnt++; instance->common.code_last_found = subghz_protocol_keeloq_gen_key(instance); if(instance->common.callback)instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context); size_t index = 0; encoder->size_upload =11*2+2+(instance->common.code_last_count_bit * 2) + 4; if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false; //Send header for(uint8_t i = 11; i > 0; i--) { encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short); } encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short*10); //Send key data for (uint8_t i = instance->common.code_last_count_bit; i > 0; i--) { if(bit_read(instance->common.code_last_found, i - 1)){ //send bit 1 encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long); }else{ //send bit 0 encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short); } } // +send 2 status bit encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long); //encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long); //encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short); // send end encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short*40); return true; } void subghz_protocol_keeloq_reset(SubGhzProtocolKeeloq* instance) { instance->common.parser_step = 0; } void subghz_protocol_keeloq_parse(SubGhzProtocolKeeloq* instance, bool level, uint32_t duration) { switch(instance->common.parser_step) { case 0: if((level) && DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) { instance->common.parser_step = 1; instance->common.header_count++; } else { instance->common.parser_step = 0; } break; case 1: if((!level) && (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) { instance->common.parser_step = 0; break; } if((instance->common.header_count > 2) && (DURATION_DIFF(duration, instance->common.te_short * 10) < instance->common.te_delta * 10)) { // Found header instance->common.parser_step = 2; instance->common.code_found = 0; instance->common.code_count_bit = 0; } else { instance->common.parser_step = 0; instance->common.header_count = 0; } break; case 2: if(level) { instance->common.te_last = duration; instance->common.parser_step = 3; } break; case 3: if(!level) { if(duration >= (instance->common.te_short * 2 + instance->common.te_delta)) { // Found end TX instance->common.parser_step = 0; if(instance->common.code_count_bit >= instance->common.code_min_count_bit_for_found) { if(instance->common.code_last_found != instance->common.code_found) { instance->common.code_last_found = instance->common.code_found; instance->common.code_last_count_bit = instance->common.code_count_bit; if(instance->common.callback) instance->common.callback( (SubGhzProtocolCommon*)instance, instance->common.context); } instance->common.code_found = 0; instance->common.code_count_bit = 0; instance->common.header_count = 0; } break; } else if( (DURATION_DIFF(instance->common.te_last, instance->common.te_short) < instance->common.te_delta) && (DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) { if(instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) { subghz_protocol_common_add_bit(&instance->common, 1); } instance->common.parser_step = 2; } else if( (DURATION_DIFF(instance->common.te_last, instance->common.te_long) < instance->common.te_delta) && (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) { if(instance->common.code_count_bit < instance->common.code_min_count_bit_for_found) { subghz_protocol_common_add_bit(&instance->common, 0); } instance->common.parser_step = 2; } else { instance->common.parser_step = 0; instance->common.header_count = 0; } } else { instance->common.parser_step = 0; instance->common.header_count = 0; } break; } } void subghz_protocol_keeloq_to_str(SubGhzProtocolKeeloq* instance, string_t output) { subghz_protocol_keeloq_check_remote_controller(instance); uint32_t code_found_hi = instance->common.code_last_found >> 32; uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_common_reverse_key( instance->common.code_last_found, instance->common.code_last_count_bit); uint32_t code_found_reverse_hi = code_found_reverse >> 32; uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s, %d Bit\r\n" "KEY:0x%lX%lX\r\n" "FIX:%08lX MF:%s \r\n" "HOP:%08lX \r\n" "SN:%07lX CNT:%04X B:%02lX\r\n", instance->common.name, instance->common.code_last_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, instance->manufacture_name, code_found_reverse_lo, instance->common.serial, instance->common.cnt, instance->common.btn); } void subghz_protocol_keeloq_to_save_str(SubGhzProtocolKeeloq* instance, string_t output) { string_printf( output, "Protocol: %s\n" "Bit: %d\n" "Key: %08lX%08lX\n", instance->common.name, instance->common.code_last_count_bit, (uint32_t)(instance->common.code_last_found >> 32), (uint32_t)(instance->common.code_last_found & 0xFFFFFFFF) ); } bool subghz_protocol_keeloq_to_load_protocol( FileWorker* file_worker, SubGhzProtocolKeeloq* instance) { bool loaded = false; string_t temp_str; string_init(temp_str); int res = 0; int data = 0; do { // Read and parse bit data from 2nd line if(!file_worker_read_until(file_worker, temp_str, '\n')) { break; } res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data); if(res != 1) { break; } instance->common.code_last_count_bit = (uint8_t)data; // Read and parse key data from 3nd line if(!file_worker_read_until(file_worker, temp_str, '\n')) { break; } // strlen("Key: ") = 5 string_right(temp_str, 5); uint8_t buf_key[8]={0}; if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)){ break; } for(uint8_t i = 0; i < 8; i++){ instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i]; } loaded = true; } while(0); string_clear(temp_str); return loaded; }