#include "ble_app.h" #include "hci_tl.h" #include "ble.h" #include "shci.h" #include "gap.h" #include #define TAG "Bt" #define BLE_APP_FLAG_HCI_EVENT (1UL << 0) #define BLE_APP_FLAG_KILL_THREAD (1UL << 1) #define BLE_APP_FLAG_ALL (BLE_APP_FLAG_HCI_EVENT | BLE_APP_FLAG_KILL_THREAD) PLACE_IN_SECTION("MB_MEM1") ALIGN(4) static TL_CmdPacket_t ble_app_cmd_buffer; PLACE_IN_SECTION("MB_MEM2") ALIGN(4) static uint32_t ble_app_nvm[BLE_NVM_SRAM_SIZE]; _Static_assert( sizeof(SHCI_C2_Ble_Init_Cmd_Packet_t) == 49, "Ble stack config structure size mismatch"); typedef struct { osMutexId_t hci_mtx; osSemaphoreId_t hci_sem; FuriThread* thread; } BleApp; static BleApp* ble_app = NULL; static int32_t ble_app_hci_thread(void* context); static void ble_app_hci_event_handler(void* pPayload); static void ble_app_hci_status_not_handler(HCI_TL_CmdStatus_t status); bool ble_app_init() { SHCI_CmdStatus_t status; ble_app = malloc(sizeof(BleApp)); // Allocate semafore and mutex for ble command buffer access ble_app->hci_mtx = osMutexNew(NULL); ble_app->hci_sem = osSemaphoreNew(1, 0, NULL); // HCI transport layer thread to handle user asynch events ble_app->thread = furi_thread_alloc(); furi_thread_set_name(ble_app->thread, "BleHciDriver"); furi_thread_set_stack_size(ble_app->thread, 1024); furi_thread_set_context(ble_app->thread, ble_app); furi_thread_set_callback(ble_app->thread, ble_app_hci_thread); furi_thread_start(ble_app->thread); // Initialize Ble Transport Layer HCI_TL_HciInitConf_t hci_tl_config = { .p_cmdbuffer = (uint8_t*)&ble_app_cmd_buffer, .StatusNotCallBack = ble_app_hci_status_not_handler, }; hci_init(ble_app_hci_event_handler, (void*)&hci_tl_config); // Configure NVM store for pairing data SHCI_C2_CONFIG_Cmd_Param_t config_param = { .PayloadCmdSize = SHCI_C2_CONFIG_PAYLOAD_CMD_SIZE, .Config1 = SHCI_C2_CONFIG_CONFIG1_BIT0_BLE_NVM_DATA_TO_SRAM, .BleNvmRamAddress = (uint32_t)ble_app_nvm, .EvtMask1 = SHCI_C2_CONFIG_EVTMASK1_BIT1_BLE_NVM_RAM_UPDATE_ENABLE, }; status = SHCI_C2_Config(&config_param); if(status) { FURI_LOG_E(TAG, "Failed to configure 2nd core: %d", status); } // Start ble stack on 2nd core SHCI_C2_Ble_Init_Cmd_Packet_t ble_init_cmd_packet = { .Header = {{0, 0, 0}}, // Header unused .Param = { .pBleBufferAddress = 0, // pBleBufferAddress not used .BleBufferSize = 0, // BleBufferSize not used .NumAttrRecord = CFG_BLE_NUM_GATT_ATTRIBUTES, .NumAttrServ = CFG_BLE_NUM_GATT_SERVICES, .AttrValueArrSize = CFG_BLE_ATT_VALUE_ARRAY_SIZE, .NumOfLinks = CFG_BLE_NUM_LINK, .ExtendedPacketLengthEnable = CFG_BLE_DATA_LENGTH_EXTENSION, .PrWriteListSize = CFG_BLE_PREPARE_WRITE_LIST_SIZE, .MblockCount = CFG_BLE_MBLOCK_COUNT, .AttMtu = CFG_BLE_MAX_ATT_MTU, .SlaveSca = CFG_BLE_SLAVE_SCA, .MasterSca = CFG_BLE_MASTER_SCA, .LsSource = CFG_BLE_LSE_SOURCE, .MaxConnEventLength = CFG_BLE_MAX_CONN_EVENT_LENGTH, .HsStartupTime = CFG_BLE_HSE_STARTUP_TIME, .ViterbiEnable = CFG_BLE_VITERBI_MODE, .Options = CFG_BLE_OPTIONS, .HwVersion = 0, .max_coc_initiator_nbr = 32, .min_tx_power = 0, .max_tx_power = 0, .rx_model_config = 1, }}; status = SHCI_C2_BLE_Init(&ble_init_cmd_packet); if(status) { FURI_LOG_E(TAG, "Failed to start ble stack: %d", status); } return status == SHCI_Success; } void ble_app_get_key_storage_buff(uint8_t** addr, uint16_t* size) { *addr = (uint8_t*)ble_app_nvm; *size = sizeof(ble_app_nvm); } void ble_app_thread_stop() { if(ble_app) { osThreadId_t thread_id = furi_thread_get_thread_id(ble_app->thread); furi_assert(thread_id); osThreadFlagsSet(thread_id, BLE_APP_FLAG_KILL_THREAD); furi_thread_join(ble_app->thread); furi_thread_free(ble_app->thread); // Free resources osMutexDelete(ble_app->hci_mtx); osSemaphoreDelete(ble_app->hci_sem); free(ble_app); ble_app = NULL; memset(&ble_app_cmd_buffer, 0, sizeof(ble_app_cmd_buffer)); } } static int32_t ble_app_hci_thread(void* arg) { uint32_t flags = 0; while(1) { flags = osThreadFlagsWait(BLE_APP_FLAG_ALL, osFlagsWaitAny, osWaitForever); if(flags & BLE_APP_FLAG_KILL_THREAD) { break; } if(flags & BLE_APP_FLAG_HCI_EVENT) { hci_user_evt_proc(); } } return 0; } // Called by WPAN lib void hci_notify_asynch_evt(void* pdata) { if(ble_app) { osThreadId_t thread_id = furi_thread_get_thread_id(ble_app->thread); furi_assert(thread_id); osThreadFlagsSet(thread_id, BLE_APP_FLAG_HCI_EVENT); } } void hci_cmd_resp_release(uint32_t flag) { if(ble_app) { osSemaphoreRelease(ble_app->hci_sem); } } void hci_cmd_resp_wait(uint32_t timeout) { if(ble_app) { osSemaphoreAcquire(ble_app->hci_sem, osWaitForever); } } static void ble_app_hci_event_handler(void* pPayload) { SVCCTL_UserEvtFlowStatus_t svctl_return_status; tHCI_UserEvtRxParam* pParam = (tHCI_UserEvtRxParam*)pPayload; if(ble_app) { svctl_return_status = SVCCTL_UserEvtRx((void*)&(pParam->pckt->evtserial)); if(svctl_return_status != SVCCTL_UserEvtFlowDisable) { pParam->status = HCI_TL_UserEventFlow_Enable; } else { pParam->status = HCI_TL_UserEventFlow_Disable; } } } static void ble_app_hci_status_not_handler(HCI_TL_CmdStatus_t status) { if(status == HCI_TL_CmdBusy) { osMutexAcquire(ble_app->hci_mtx, osWaitForever); } else if(status == HCI_TL_CmdAvailable) { osMutexRelease(ble_app->hci_mtx); } } void SVCCTL_ResumeUserEventFlow(void) { hci_resume_flow(); }