#include "api-hal-subghz.h" #include #include #include #include #include #include #include static const uint8_t api_hal_subghz_preset_ook_async_regs[][2] = { /* Base setting */ { CC1101_IOCFG0, 0x0D }, // GD0 as async serial data output/input { CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time /* Async OOK Specific things */ { CC1101_MDMCFG2, 0x30 }, // ASK/OOK, No preamble/sync { CC1101_PKTCTRL0, 0x32 }, // Async, no CRC, Infinite { CC1101_FREND0, 0x01 }, // OOK/ASK PATABLE /* End */ { 0, 0 }, }; static const uint8_t api_hal_subghz_preset_ook_async_patable[8] = { 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t api_hal_subghz_preset_mp_regs[][2] = { { CC1101_IOCFG0, 0x0D }, { CC1101_FIFOTHR, 0x07 }, { CC1101_PKTCTRL0, 0x32 }, //{ CC1101_FSCTRL1, 0x0E }, { CC1101_FSCTRL1, 0x06 }, { CC1101_FREQ2, 0x10 }, { CC1101_FREQ1, 0xB0 }, { CC1101_FREQ0, 0x7F }, { CC1101_MDMCFG4, 0x17 }, { CC1101_MDMCFG3, 0x32 }, { CC1101_MDMCFG2, 0x30 }, //<---OOK/ASK { CC1101_MDMCFG1, 0x23 }, { CC1101_MDMCFG0, 0xF8 }, { CC1101_MCSM0, 0x18 }, { CC1101_FOCCFG, 0x18 }, { CC1101_AGCTRL2, 0x07 }, { CC1101_AGCTRL1, 0x00 }, { CC1101_AGCTRL0, 0x91 }, { CC1101_WORCTRL, 0xFB }, { CC1101_FREND1, 0xB6 }, //{ CC1101_FREND0, 0x11 }, { CC1101_FREND0, 0x01 }, { CC1101_FSCAL3, 0xE9 }, { CC1101_FSCAL2, 0x2A }, { CC1101_FSCAL1, 0x00 }, { CC1101_FSCAL0, 0x1F }, { CC1101_TEST2, 0x88 }, { CC1101_TEST1, 0x31 }, { CC1101_TEST0, 0x09 }, /* End */ { 0, 0 }, }; static const uint8_t api_hal_subghz_preset_mp_patable[8] = { 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const uint8_t api_hal_subghz_preset_2fsk_packet_regs[][2] = { /* Base setting */ { CC1101_IOCFG0, 0x06 }, // GD0 as async serial data output/input { CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time /* Magic */ { CC1101_TEST2, 0x81}, { CC1101_TEST1, 0x35}, { CC1101_TEST0, 0x09}, /* End */ { 0, 0 }, }; static const uint8_t api_hal_subghz_preset_2fsk_packet_patable[8] = { 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; void api_hal_subghz_init() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); // Reset and shutdown cc1101_reset(device); // Prepare GD0 for power on self test hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow); // GD0 low cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW); while(hal_gpio_read(&gpio_cc1101_g0) != false); // GD0 high cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV); while(hal_gpio_read(&gpio_cc1101_g0) != true); // Reset GD0 to floating state cc1101_write_reg(device, CC1101_IOCFG0, CC1101IocfgHighImpedance); hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); // RF switches hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW); // Turn off oscillator cc1101_shutdown(device); api_hal_spi_device_return(device); } void api_hal_subghz_dump_state() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); printf( "[api_hal_subghz] cc1101 chip %d, version %d\r\n", cc1101_get_partnumber(device), cc1101_get_version(device) ); api_hal_spi_device_return(device); } void api_hal_subghz_load_preset(ApiHalSubGhzPreset preset) { if(preset == ApiHalSubGhzPresetOokAsync) { api_hal_subghz_load_registers(api_hal_subghz_preset_ook_async_regs); api_hal_subghz_load_patable(api_hal_subghz_preset_ook_async_patable); } else if(preset == ApiHalSubGhzPreset2FskPacket) { api_hal_subghz_load_registers(api_hal_subghz_preset_2fsk_packet_regs); api_hal_subghz_load_patable(api_hal_subghz_preset_2fsk_packet_patable); } else if(preset == ApiHalSubGhzPresetMP) { api_hal_subghz_load_registers(api_hal_subghz_preset_mp_regs); api_hal_subghz_load_patable(api_hal_subghz_preset_mp_patable); } } uint8_t api_hal_subghz_get_status() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); CC1101StatusRaw st; st.status = cc1101_get_status(device); api_hal_spi_device_return(device); return st.status_raw; } void api_hal_subghz_load_registers(const uint8_t data[][2]) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_reset(device); uint32_t i = 0; while (data[i][0]) { cc1101_write_reg(device, data[i][0], data[i][1]); i++; } api_hal_spi_device_return(device); } void api_hal_subghz_load_patable(const uint8_t data[8]) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_set_pa_table(device, data); api_hal_spi_device_return(device); } void api_hal_subghz_write_packet(const uint8_t* data, uint8_t size) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_flush_tx(device); cc1101_write_fifo(device, data, size); api_hal_spi_device_return(device); } void api_hal_subghz_flush_rx() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_flush_rx(device); api_hal_spi_device_return(device); } void api_hal_subghz_read_packet(uint8_t* data, uint8_t* size) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_read_fifo(device, data, size); api_hal_spi_device_return(device); } void api_hal_subghz_shutdown() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); // Reset and shutdown cc1101_shutdown(device); api_hal_spi_device_return(device); } void api_hal_subghz_reset() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_reset(device); api_hal_spi_device_return(device); } void api_hal_subghz_idle() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_idle(device); api_hal_spi_device_return(device); } void api_hal_subghz_rx() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_rx(device); api_hal_spi_device_return(device); } void api_hal_subghz_tx() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); cc1101_switch_to_idle(device); cc1101_switch_to_tx(device); api_hal_spi_device_return(device); } float api_hal_subghz_get_rssi() { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); int32_t rssi_dec = cc1101_get_rssi(device); api_hal_spi_device_return(device); float rssi = rssi_dec; if(rssi_dec >= 128) { rssi = ((rssi - 256.0f) / 2.0f) - 74.0f; } else { rssi = (rssi / 2.0f) - 74.0f; } return rssi; } uint32_t api_hal_subghz_set_frequency_and_path(uint32_t value) { value = api_hal_subghz_set_frequency(value); if(value >= 300000000 && value <= 348000335) { api_hal_subghz_set_path(ApiHalSubGhzPath315); } else if(value >= 387000000 && value <= 464000000) { api_hal_subghz_set_path(ApiHalSubGhzPath433); } else if(value >= 779000000 && value <= 928000000) { api_hal_subghz_set_path(ApiHalSubGhzPath868); } else { furi_check(0); } return value; } uint32_t api_hal_subghz_set_frequency(uint32_t value) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); // Compensate rounding if (value % cc1101_get_frequency_step(device) > (cc1101_get_frequency_step(device) / 2)) { value += cc1101_get_frequency_step(device); } uint32_t real_frequency = cc1101_set_frequency(device, value); cc1101_calibrate(device); api_hal_spi_device_return(device); return real_frequency; } void api_hal_subghz_set_path(ApiHalSubGhzPath path) { const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz); if (path == ApiHalSubGhzPath433) { hal_gpio_write(&gpio_rf_sw_0, 0); cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV); } else if (path == ApiHalSubGhzPath315) { hal_gpio_write(&gpio_rf_sw_0, 1); cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW); } else if (path == ApiHalSubGhzPath868) { hal_gpio_write(&gpio_rf_sw_0, 1); cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV); } else if (path == ApiHalSubGhzPathIsolate) { hal_gpio_write(&gpio_rf_sw_0, 0); cc1101_write_reg(device, CC1101_IOCFG2, CC1101IocfgHW); } else { furi_check(0); } api_hal_spi_device_return(device); } volatile uint32_t api_hal_subghz_capture_delta_duration = 0; volatile ApiHalSubGhzCaptureCallback api_hal_subghz_capture_callback = NULL; volatile void* api_hal_subghz_capture_callback_context = NULL; void api_hal_subghz_set_capture_callback(ApiHalSubGhzCaptureCallback callback, void* context) { api_hal_subghz_capture_callback = callback; api_hal_subghz_capture_callback_context = context; } static void api_hal_subghz_capture_ISR() { // Channel 1 if(LL_TIM_IsActiveFlag_CC1(TIM2)) { LL_TIM_ClearFlag_CC1(TIM2); api_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2); if (api_hal_subghz_capture_callback) { api_hal_subghz_capture_callback( ApiHalSubGhzCaptureLevelHigh, api_hal_subghz_capture_delta_duration, (void*)api_hal_subghz_capture_callback_context ); } } // Channel 2 if(LL_TIM_IsActiveFlag_CC2(TIM2)) { LL_TIM_ClearFlag_CC2(TIM2); if (api_hal_subghz_capture_callback) { api_hal_subghz_capture_callback( ApiHalSubGhzCaptureLevelLow, LL_TIM_IC_GetCaptureCH2(TIM2) - api_hal_subghz_capture_delta_duration, (void*)api_hal_subghz_capture_callback_context ); } } } void api_hal_subghz_enable_capture() { /* Peripheral clock enable */ LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2); LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA); hal_gpio_init_ex(&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2); // Timer: base LL_TIM_InitTypeDef TIM_InitStruct = {0}; TIM_InitStruct.Prescaler = 64-1; TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct.Autoreload = 0xFFFFFFFF; TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; LL_TIM_Init(TIM2, &TIM_InitStruct); // Timer: advanced and channel LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_DisableARRPreload(TIM2); LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2); LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET); LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2); LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1); LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING); LL_TIM_DisableIT_TRIG(TIM2); LL_TIM_DisableDMAReq_TRIG(TIM2); LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET); LL_TIM_EnableMasterSlaveMode(TIM2); LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI); LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1); LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1); LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING); LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI); LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1); // ISR setup api_hal_interrupt_set_timer_isr(TIM2, api_hal_subghz_capture_ISR); NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0)); NVIC_EnableIRQ(TIM2_IRQn); // Interrupts and channels LL_TIM_EnableIT_CC1(TIM2); LL_TIM_EnableIT_CC2(TIM2); LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1); LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2); // Start timer LL_TIM_SetCounter(TIM2, 0); LL_TIM_EnableCounter(TIM2); } void api_hal_subghz_disable_capture() { LL_TIM_DeInit(TIM2); api_hal_interrupt_set_timer_isr(TIM2, NULL); hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); }