/** ****************************************************************************** * @file stm32_adafruit_sd.c * @author MCD Application Team * @version V3.0.0 * @date 23-December-2016 * @brief This file provides a set of functions needed to manage the SD card * mounted on the Adafruit 1.8" TFT LCD shield (reference ID 802), * that is used with the STM32 Nucleo board through SPI interface. * It implements a high level communication layer for read and write * from/to this memory. The needed STM32XXxx hardware resources (SPI and * GPIO) are defined in stm32XXxx_nucleo.h file, and the initialization is * performed in SD_IO_Init() function declared in stm32XXxx_nucleo.c * file. * You can easily tailor this driver to any other development board, * by just adapting the defines for hardware resources and * SD_IO_Init() function. * * +-------------------------------------------------------+ * | Pin assignment | * +-------------------------+---------------+-------------+ * | STM32XXxx SPI Pins | SD | Pin | * +-------------------------+---------------+-------------+ * | SD_SPI_CS_PIN | ChipSelect | 1 | * | SD_SPI_MOSI_PIN / MOSI | DataIn | 2 | * | | GND | 3 (0 V) | * | | VDD | 4 (3.3 V)| * | SD_SPI_SCK_PIN / SCLK | Clock | 5 | * | | GND | 6 (0 V) | * | SD_SPI_MISO_PIN / MISO | DataOut | 7 | * +-------------------------+---------------+-------------+ ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* File Info : ----------------------------------------------------------------- User NOTES 1. How to use this driver: -------------------------- - This driver does not need a specific component driver for the micro SD device to be included with. 2. Driver description: --------------------- + Initialization steps: o Initialize the micro SD card using the BSP_SD_Init() function. o Checking the SD card presence is not managed because SD detection pin is not physically mapped on the Adafruit shield. o The function BSP_SD_GetCardInfo() is used to get the micro SD card information which is stored in the structure "SD_CardInfo". + Micro SD card operations o The micro SD card can be accessed with read/write block(s) operations once it is ready for access. The access can be performed in polling mode by calling the functions BSP_SD_ReadBlocks()/BSP_SD_WriteBlocks() o The SD erase block(s) is performed using the function BSP_SD_Erase() with specifying the number of blocks to erase. o The SD runtime status is returned when calling the function BSP_SD_GetStatus(). ------------------------------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ #include "stm32_adafruit_sd.h" #include "stdlib.h" #include "string.h" #include "stdio.h" #include /** @addtogroup BSP * @{ */ /** @addtogroup STM32_ADAFRUIT * @{ */ /** @defgroup STM32_ADAFRUIT_SD * @{ */ /* Private typedef -----------------------------------------------------------*/ /** @defgroup STM32_ADAFRUIT_SD_Private_Types_Definitions * @{ */ typedef struct { uint8_t r1; uint8_t r2; uint8_t r3; uint8_t r4; uint8_t r5; } SD_CmdAnswer_typedef; /** * @} */ /* Private define ------------------------------------------------------------*/ /** @defgroup STM32_ADAFRUIT_SD_Private_Defines * @{ */ #define SD_DUMMY_BYTE 0xFF #define SD_MAX_FRAME_LENGTH 17 /* Lenght = 16 + 1 */ #define SD_CMD_LENGTH 6 #define SD_MAX_TRY 100 /* Number of try */ #define SD_CSD_STRUCT_V1 0x2 /* CSD struct version V1 */ #define SD_CSD_STRUCT_V2 0x1 /* CSD struct version V2 */ /** * @brief SD ansewer format */ typedef enum { SD_ANSWER_R1_EXPECTED, SD_ANSWER_R1B_EXPECTED, SD_ANSWER_R2_EXPECTED, SD_ANSWER_R3_EXPECTED, SD_ANSWER_R4R5_EXPECTED, SD_ANSWER_R7_EXPECTED, } SD_Answer_type; /** * @brief Start Data tokens: * Tokens (necessary because at nop/idle (and CS active) only 0xff is * on the data/command line) */ #define SD_TOKEN_START_DATA_SINGLE_BLOCK_READ \ 0xFE /* Data token start byte, Start Single Block Read */ #define SD_TOKEN_START_DATA_MULTIPLE_BLOCK_READ \ 0xFE /* Data token start byte, Start Multiple Block Read */ #define SD_TOKEN_START_DATA_SINGLE_BLOCK_WRITE \ 0xFE /* Data token start byte, Start Single Block Write */ #define SD_TOKEN_START_DATA_MULTIPLE_BLOCK_WRITE \ 0xFD /* Data token start byte, Start Multiple Block Write */ #define SD_TOKEN_STOP_DATA_MULTIPLE_BLOCK_WRITE \ 0xFD /* Data toke stop byte, Stop Multiple Block Write */ /** * @brief Commands: CMDxx = CMD-number | 0x40 */ #define SD_CMD_GO_IDLE_STATE 0 /* CMD0 = 0x40 */ #define SD_CMD_SEND_OP_COND 1 /* CMD1 = 0x41 */ #define SD_CMD_SEND_IF_COND 8 /* CMD8 = 0x48 */ #define SD_CMD_SEND_CSD 9 /* CMD9 = 0x49 */ #define SD_CMD_SEND_CID 10 /* CMD10 = 0x4A */ #define SD_CMD_STOP_TRANSMISSION 12 /* CMD12 = 0x4C */ #define SD_CMD_SEND_STATUS 13 /* CMD13 = 0x4D */ #define SD_CMD_SET_BLOCKLEN 16 /* CMD16 = 0x50 */ #define SD_CMD_READ_SINGLE_BLOCK 17 /* CMD17 = 0x51 */ #define SD_CMD_READ_MULT_BLOCK 18 /* CMD18 = 0x52 */ #define SD_CMD_SET_BLOCK_COUNT 23 /* CMD23 = 0x57 */ #define SD_CMD_WRITE_SINGLE_BLOCK 24 /* CMD24 = 0x58 */ #define SD_CMD_WRITE_MULT_BLOCK 25 /* CMD25 = 0x59 */ #define SD_CMD_PROG_CSD 27 /* CMD27 = 0x5B */ #define SD_CMD_SET_WRITE_PROT 28 /* CMD28 = 0x5C */ #define SD_CMD_CLR_WRITE_PROT 29 /* CMD29 = 0x5D */ #define SD_CMD_SEND_WRITE_PROT 30 /* CMD30 = 0x5E */ #define SD_CMD_SD_ERASE_GRP_START 32 /* CMD32 = 0x60 */ #define SD_CMD_SD_ERASE_GRP_END 33 /* CMD33 = 0x61 */ #define SD_CMD_UNTAG_SECTOR 34 /* CMD34 = 0x62 */ #define SD_CMD_ERASE_GRP_START 35 /* CMD35 = 0x63 */ #define SD_CMD_ERASE_GRP_END 36 /* CMD36 = 0x64 */ #define SD_CMD_UNTAG_ERASE_GROUP 37 /* CMD37 = 0x65 */ #define SD_CMD_ERASE 38 /* CMD38 = 0x66 */ #define SD_CMD_SD_APP_OP_COND 41 /* CMD41 = 0x69 */ #define SD_CMD_APP_CMD 55 /* CMD55 = 0x77 */ #define SD_CMD_READ_OCR 58 /* CMD55 = 0x79 */ /** * @brief SD reponses and error flags */ typedef enum { /* R1 answer value */ SD_R1_NO_ERROR = (0x00), SD_R1_IN_IDLE_STATE = (0x01), SD_R1_ERASE_RESET = (0x02), SD_R1_ILLEGAL_COMMAND = (0x04), SD_R1_COM_CRC_ERROR = (0x08), SD_R1_ERASE_SEQUENCE_ERROR = (0x10), SD_R1_ADDRESS_ERROR = (0x20), SD_R1_PARAMETER_ERROR = (0x40), /* R2 answer value */ SD_R2_NO_ERROR = 0x00, SD_R2_CARD_LOCKED = 0x01, SD_R2_LOCKUNLOCK_ERROR = 0x02, SD_R2_ERROR = 0x04, SD_R2_CC_ERROR = 0x08, SD_R2_CARD_ECC_FAILED = 0x10, SD_R2_WP_VIOLATION = 0x20, SD_R2_ERASE_PARAM = 0x40, SD_R2_OUTOFRANGE = 0x80, /** * @brief Data response error */ SD_DATA_OK = (0x05), SD_DATA_CRC_ERROR = (0x0B), SD_DATA_WRITE_ERROR = (0x0D), SD_DATA_OTHER_ERROR = (0xFF) } SD_Error; /** * @} */ /* Private macro -------------------------------------------------------------*/ /** @defgroup STM32_ADAFRUIT_SD_Private_Macros * @{ */ /** * @} */ /* Private variables ---------------------------------------------------------*/ /** @defgroup STM32_ADAFRUIT_SD_Private_Variables * @{ */ __IO uint8_t SdStatus = SD_NOT_PRESENT; /* flag_SDHC : 0 : Standard capacity 1 : High capacity */ uint16_t flag_SDHC = 0; /** * @} */ /* Private function prototypes -----------------------------------------------*/ static uint8_t SD_GetCIDRegister(SD_CID* Cid); static uint8_t SD_GetCSDRegister(SD_CSD* Csd); static uint8_t SD_GetDataResponse(void); static uint8_t SD_GoIdleState(void); static SD_CmdAnswer_typedef SD_SendCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Answer); static uint8_t SD_WaitData(uint8_t data); static uint8_t SD_ReadData(void); /** @defgroup STM32_ADAFRUIT_SD_Private_Function_Prototypes * @{ */ /** * @} */ /* Private functions ---------------------------------------------------------*/ void SD_SPI_Bus_To_Down_State() { furi_hal_gpio_init_ex( furi_hal_sd_spi_handle->miso, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh, GpioAltFnUnused); furi_hal_gpio_init_ex( furi_hal_sd_spi_handle->mosi, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh, GpioAltFnUnused); furi_hal_gpio_init_ex( furi_hal_sd_spi_handle->sck, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh, GpioAltFnUnused); furi_hal_gpio_write(furi_hal_sd_spi_handle->cs, false); furi_hal_gpio_write(furi_hal_sd_spi_handle->miso, false); furi_hal_gpio_write(furi_hal_sd_spi_handle->mosi, false); furi_hal_gpio_write(furi_hal_sd_spi_handle->sck, false); } void SD_SPI_Bus_To_Normal_State() { furi_hal_gpio_write(furi_hal_sd_spi_handle->cs, true); furi_hal_gpio_init_ex( furi_hal_sd_spi_handle->miso, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedVeryHigh, GpioAltFn5SPI2); furi_hal_gpio_init_ex( furi_hal_sd_spi_handle->mosi, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedVeryHigh, GpioAltFn5SPI2); furi_hal_gpio_init_ex( furi_hal_sd_spi_handle->sck, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedVeryHigh, GpioAltFn5SPI2); } /** @defgroup STM32_ADAFRUIT_SD_Private_Functions * @{ */ /** * @brief Initializes the SD/SD communication. * @param None * @retval The SD Response: * - MSD_ERROR: Sequence failed * - MSD_OK: Sequence succeed */ uint8_t BSP_SD_Init(bool reset_card) { /* Slow speed init */ furi_hal_spi_acquire(&furi_hal_spi_bus_handle_sd_slow); furi_hal_sd_spi_handle = &furi_hal_spi_bus_handle_sd_slow; /* We must reset card in spi_lock context */ if(reset_card) { /* disable power and set low on all bus pins */ furi_hal_power_disable_external_3_3v(); SD_SPI_Bus_To_Down_State(); hal_sd_detect_set_low(); furi_delay_ms(250); /* reinit bus and enable power */ SD_SPI_Bus_To_Normal_State(); hal_sd_detect_init(); furi_hal_power_enable_external_3_3v(); furi_delay_ms(100); } /* Configure IO functionalities for SD pin */ SD_IO_Init(); /* SD detection pin is not physically mapped on the Adafruit shield */ SdStatus = SD_PRESENT; uint8_t res = BSP_SD_ERROR; for(uint8_t i = 0; i < 128; i++) { res = SD_GoIdleState(); if(res == BSP_SD_OK) break; } furi_hal_sd_spi_handle = NULL; furi_hal_spi_release(&furi_hal_spi_bus_handle_sd_slow); /* SD initialized and set to SPI mode properly */ return res; } /** * @brief Returns information about specific card. * @param pCardInfo: Pointer to a SD_CardInfo structure that contains all SD * card information. * @retval The SD Response: * - MSD_ERROR: Sequence failed * - MSD_OK: Sequence succeed */ uint8_t BSP_SD_GetCardInfo(SD_CardInfo* pCardInfo) { uint8_t status; status = SD_GetCSDRegister(&(pCardInfo->Csd)); status |= SD_GetCIDRegister(&(pCardInfo->Cid)); if(flag_SDHC == 1) { pCardInfo->LogBlockSize = 512; pCardInfo->CardBlockSize = 512; pCardInfo->CardCapacity = ((uint64_t)pCardInfo->Csd.version.v2.DeviceSize + 1UL) * 1024UL * (uint64_t)pCardInfo->LogBlockSize; pCardInfo->LogBlockNbr = (pCardInfo->CardCapacity) / (pCardInfo->LogBlockSize); } else { pCardInfo->CardCapacity = (pCardInfo->Csd.version.v1.DeviceSize + 1); pCardInfo->CardCapacity *= (1 << (pCardInfo->Csd.version.v1.DeviceSizeMul + 2)); pCardInfo->LogBlockSize = 512; pCardInfo->CardBlockSize = 1 << (pCardInfo->Csd.RdBlockLen); pCardInfo->CardCapacity *= pCardInfo->CardBlockSize; pCardInfo->LogBlockNbr = (pCardInfo->CardCapacity) / (pCardInfo->LogBlockSize); } return status; } /** * @brief Reads block(s) from a specified address in the SD card, in polling mode. * @param pData: Pointer to the buffer that will contain the data to transmit * @param ReadAddr: Address from where data is to be read. The address is counted * in blocks of 512bytes * @param NumOfBlocks: Number of SD blocks to read * @param Timeout: This parameter is used for compatibility with BSP implementation * @retval SD status */ uint8_t BSP_SD_ReadBlocks(uint32_t* pData, uint32_t ReadAddr, uint32_t NumOfBlocks, uint32_t Timeout) { UNUSED(Timeout); // FIXME! uint32_t offset = 0; uint32_t addr; uint8_t retr = BSP_SD_ERROR; uint8_t* ptr = NULL; SD_CmdAnswer_typedef response; uint16_t BlockSize = 512; /* Send CMD16 (SD_CMD_SET_BLOCKLEN) to set the size of the block and Check if the SD acknowledged the set block length command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_SET_BLOCKLEN, BlockSize, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(response.r1 != SD_R1_NO_ERROR) { goto error; } ptr = malloc(sizeof(uint8_t) * BlockSize); if(ptr == NULL) { goto error; } memset(ptr, SD_DUMMY_BYTE, sizeof(uint8_t) * BlockSize); /* Initialize the address */ addr = (ReadAddr * ((flag_SDHC == 1) ? 1 : BlockSize)); /* Data transfer */ while(NumOfBlocks--) { /* Send CMD17 (SD_CMD_READ_SINGLE_BLOCK) to read one block */ /* Check if the SD acknowledged the read block command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_READ_SINGLE_BLOCK, addr, 0xFF, SD_ANSWER_R1_EXPECTED); if(response.r1 != SD_R1_NO_ERROR) { goto error; } /* Now look for the data token to signify the start of the data */ if(SD_WaitData(SD_TOKEN_START_DATA_SINGLE_BLOCK_READ) == BSP_SD_OK) { /* Read the SD block data : read NumByteToRead data */ SD_IO_WriteReadData(ptr, (uint8_t*)pData + offset, BlockSize); /* Set next read address*/ offset += BlockSize; addr = ((flag_SDHC == 1) ? (addr + 1) : (addr + BlockSize)); /* get CRC bytes (not really needed by us, but required by SD) */ SD_IO_WriteByte(SD_DUMMY_BYTE); SD_IO_WriteByte(SD_DUMMY_BYTE); } else { goto error; } /* End the command data read cycle */ SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); } retr = BSP_SD_OK; error: /* Send dummy byte: 8 Clock pulses of delay */ SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(ptr != NULL) free(ptr); /* Return the reponse */ return retr; } /** * @brief Writes block(s) to a specified address in the SD card, in polling mode. * @param pData: Pointer to the buffer that will contain the data to transmit * @param WriteAddr: Address from where data is to be written. The address is counted * in blocks of 512bytes * @param NumOfBlocks: Number of SD blocks to write * @param Timeout: This parameter is used for compatibility with BSP implementation * @retval SD status */ uint8_t BSP_SD_WriteBlocks( uint32_t* pData, uint32_t WriteAddr, uint32_t NumOfBlocks, uint32_t Timeout) { UNUSED(Timeout); // FIXME! uint32_t offset = 0; uint32_t addr; uint8_t retr = BSP_SD_ERROR; uint8_t* ptr = NULL; SD_CmdAnswer_typedef response; uint16_t BlockSize = 512; /* Send CMD16 (SD_CMD_SET_BLOCKLEN) to set the size of the block and Check if the SD acknowledged the set block length command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_SET_BLOCKLEN, BlockSize, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(response.r1 != SD_R1_NO_ERROR) { goto error; } ptr = malloc(sizeof(uint8_t) * BlockSize); if(ptr == NULL) { goto error; } /* Initialize the address */ addr = (WriteAddr * ((flag_SDHC == 1) ? 1 : BlockSize)); /* Data transfer */ while(NumOfBlocks--) { /* Send CMD24 (SD_CMD_WRITE_SINGLE_BLOCK) to write blocks and Check if the SD acknowledged the write block command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_WRITE_SINGLE_BLOCK, addr, 0xFF, SD_ANSWER_R1_EXPECTED); if(response.r1 != SD_R1_NO_ERROR) { goto error; } /* Send dummy byte for NWR timing : one byte between CMDWRITE and TOKEN */ SD_IO_WriteByte(SD_DUMMY_BYTE); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Send the data token to signify the start of the data */ SD_IO_WriteByte(SD_TOKEN_START_DATA_SINGLE_BLOCK_WRITE); /* Write the block data to SD */ SD_IO_WriteReadData((uint8_t*)pData + offset, ptr, BlockSize); /* Set next write address */ offset += BlockSize; addr = ((flag_SDHC == 1) ? (addr + 1) : (addr + BlockSize)); /* Put CRC bytes (not really needed by us, but required by SD) */ SD_IO_WriteByte(SD_DUMMY_BYTE); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Read data response */ if(SD_GetDataResponse() != SD_DATA_OK) { /* Set response value to failure */ goto error; } SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); } retr = BSP_SD_OK; error: if(ptr != NULL) free(ptr); /* Send dummy byte: 8 Clock pulses of delay */ SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Return the reponse */ return retr; } /** * @brief Erases the specified memory area of the given SD card. * @param StartAddr: Start address in Blocks (Size of a block is 512bytes) * @param EndAddr: End address in Blocks (Size of a block is 512bytes) * @retval SD status */ uint8_t BSP_SD_Erase(uint32_t StartAddr, uint32_t EndAddr) { uint8_t retr = BSP_SD_ERROR; SD_CmdAnswer_typedef response; uint16_t BlockSize = 512; /* Send CMD32 (Erase group start) and check if the SD acknowledged the erase command: R1 response (0x00: no errors) */ response = SD_SendCmd( SD_CMD_SD_ERASE_GRP_START, (StartAddr) * (flag_SDHC == 1 ? 1 : BlockSize), 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(response.r1 == SD_R1_NO_ERROR) { /* Send CMD33 (Erase group end) and Check if the SD acknowledged the erase command: R1 response (0x00: no errors) */ response = SD_SendCmd( SD_CMD_SD_ERASE_GRP_END, (EndAddr * 512) * (flag_SDHC == 1 ? 1 : BlockSize), 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(response.r1 == SD_R1_NO_ERROR) { /* Send CMD38 (Erase) and Check if the SD acknowledged the erase command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_ERASE, 0, 0xFF, SD_ANSWER_R1B_EXPECTED); if(response.r1 == SD_R1_NO_ERROR) { retr = BSP_SD_OK; } SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); } } /* Return the reponse */ return retr; } /** * @brief Returns the SD status. * @param None * @retval The SD status. */ uint8_t BSP_SD_GetCardState(void) { SD_CmdAnswer_typedef retr; /* Send CMD13 (SD_SEND_STATUS) to get SD status */ retr = SD_SendCmd(SD_CMD_SEND_STATUS, 0, 0xFF, SD_ANSWER_R2_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Find SD status according to card state */ if((retr.r1 == SD_R1_NO_ERROR) && (retr.r2 == SD_R2_NO_ERROR)) { return BSP_SD_OK; } return BSP_SD_ERROR; } /** * @brief Reads the SD card SCD register. * Reading the contents of the CSD register in SPI mode is a simple * read-block transaction. * @param Csd: pointer on an SCD register structure * @retval SD status */ uint8_t SD_GetCSDRegister(SD_CSD* Csd) { uint16_t counter = 0; uint8_t CSD_Tab[16]; uint8_t retr = BSP_SD_ERROR; SD_CmdAnswer_typedef response; /* Send CMD9 (CSD register) or CMD10(CSD register) and Wait for response in the R1 format (0x00 is no errors) */ response = SD_SendCmd(SD_CMD_SEND_CSD, 0, 0xFF, SD_ANSWER_R1_EXPECTED); if(response.r1 == SD_R1_NO_ERROR) { if(SD_WaitData(SD_TOKEN_START_DATA_SINGLE_BLOCK_READ) == BSP_SD_OK) { for(counter = 0; counter < 16; counter++) { /* Store CSD register value on CSD_Tab */ CSD_Tab[counter] = SD_IO_WriteByte(SD_DUMMY_BYTE); } /* Get CRC bytes (not really needed by us, but required by SD) */ SD_IO_WriteByte(SD_DUMMY_BYTE); SD_IO_WriteByte(SD_DUMMY_BYTE); /************************************************************************* CSD header decoding *************************************************************************/ /* Byte 0 */ Csd->CSDStruct = (CSD_Tab[0] & 0xC0) >> 6; Csd->Reserved1 = CSD_Tab[0] & 0x3F; /* Byte 1 */ Csd->TAAC = CSD_Tab[1]; /* Byte 2 */ Csd->NSAC = CSD_Tab[2]; /* Byte 3 */ Csd->MaxBusClkFrec = CSD_Tab[3]; /* Byte 4/5 */ Csd->CardComdClasses = (CSD_Tab[4] << 4) | ((CSD_Tab[5] & 0xF0) >> 4); Csd->RdBlockLen = CSD_Tab[5] & 0x0F; /* Byte 6 */ Csd->PartBlockRead = (CSD_Tab[6] & 0x80) >> 7; Csd->WrBlockMisalign = (CSD_Tab[6] & 0x40) >> 6; Csd->RdBlockMisalign = (CSD_Tab[6] & 0x20) >> 5; Csd->DSRImpl = (CSD_Tab[6] & 0x10) >> 4; /************************************************************************* CSD v1/v2 decoding *************************************************************************/ if(flag_SDHC == 0) { Csd->version.v1.Reserved1 = ((CSD_Tab[6] & 0x0C) >> 2); Csd->version.v1.DeviceSize = ((CSD_Tab[6] & 0x03) << 10) | (CSD_Tab[7] << 2) | ((CSD_Tab[8] & 0xC0) >> 6); Csd->version.v1.MaxRdCurrentVDDMin = (CSD_Tab[8] & 0x38) >> 3; Csd->version.v1.MaxRdCurrentVDDMax = (CSD_Tab[8] & 0x07); Csd->version.v1.MaxWrCurrentVDDMin = (CSD_Tab[9] & 0xE0) >> 5; Csd->version.v1.MaxWrCurrentVDDMax = (CSD_Tab[9] & 0x1C) >> 2; Csd->version.v1.DeviceSizeMul = ((CSD_Tab[9] & 0x03) << 1) | ((CSD_Tab[10] & 0x80) >> 7); } else { Csd->version.v2.Reserved1 = ((CSD_Tab[6] & 0x0F) << 2) | ((CSD_Tab[7] & 0xC0) >> 6); Csd->version.v2.DeviceSize = ((CSD_Tab[7] & 0x3F) << 16) | (CSD_Tab[8] << 8) | CSD_Tab[9]; Csd->version.v2.Reserved2 = ((CSD_Tab[10] & 0x80) >> 8); } Csd->EraseSingleBlockEnable = (CSD_Tab[10] & 0x40) >> 6; Csd->EraseSectorSize = ((CSD_Tab[10] & 0x3F) << 1) | ((CSD_Tab[11] & 0x80) >> 7); Csd->WrProtectGrSize = (CSD_Tab[11] & 0x7F); Csd->WrProtectGrEnable = (CSD_Tab[12] & 0x80) >> 7; Csd->Reserved2 = (CSD_Tab[12] & 0x60) >> 5; Csd->WrSpeedFact = (CSD_Tab[12] & 0x1C) >> 2; Csd->MaxWrBlockLen = ((CSD_Tab[12] & 0x03) << 2) | ((CSD_Tab[13] & 0xC0) >> 6); Csd->WriteBlockPartial = (CSD_Tab[13] & 0x20) >> 5; Csd->Reserved3 = (CSD_Tab[13] & 0x1F); Csd->FileFormatGrouop = (CSD_Tab[14] & 0x80) >> 7; Csd->CopyFlag = (CSD_Tab[14] & 0x40) >> 6; Csd->PermWrProtect = (CSD_Tab[14] & 0x20) >> 5; Csd->TempWrProtect = (CSD_Tab[14] & 0x10) >> 4; Csd->FileFormat = (CSD_Tab[14] & 0x0C) >> 2; Csd->Reserved4 = (CSD_Tab[14] & 0x03); Csd->crc = (CSD_Tab[15] & 0xFE) >> 1; Csd->Reserved5 = (CSD_Tab[15] & 0x01); retr = BSP_SD_OK; } } /* Send dummy byte: 8 Clock pulses of delay */ SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Return the reponse */ return retr; } /** * @brief Reads the SD card CID register. * Reading the contents of the CID register in SPI mode is a simple * read-block transaction. * @param Cid: pointer on an CID register structure * @retval SD status */ uint8_t SD_GetCIDRegister(SD_CID* Cid) { uint32_t counter = 0; uint8_t retr = BSP_SD_ERROR; uint8_t CID_Tab[16]; SD_CmdAnswer_typedef response; /* Send CMD10 (CID register) and Wait for response in the R1 format (0x00 is no errors) */ response = SD_SendCmd(SD_CMD_SEND_CID, 0, 0xFF, SD_ANSWER_R1_EXPECTED); if(response.r1 == SD_R1_NO_ERROR) { if(SD_WaitData(SD_TOKEN_START_DATA_SINGLE_BLOCK_READ) == BSP_SD_OK) { /* Store CID register value on CID_Tab */ for(counter = 0; counter < 16; counter++) { CID_Tab[counter] = SD_IO_WriteByte(SD_DUMMY_BYTE); } /* Get CRC bytes (not really needed by us, but required by SD) */ SD_IO_WriteByte(SD_DUMMY_BYTE); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Byte 0 */ Cid->ManufacturerID = CID_Tab[0]; /* Byte 1 */ Cid->OEM_AppliID = CID_Tab[1] << 8; /* Byte 2 */ Cid->OEM_AppliID |= CID_Tab[2]; /* Byte 3 */ Cid->ProdName1 = CID_Tab[3] << 24; /* Byte 4 */ Cid->ProdName1 |= CID_Tab[4] << 16; /* Byte 5 */ Cid->ProdName1 |= CID_Tab[5] << 8; /* Byte 6 */ Cid->ProdName1 |= CID_Tab[6]; /* Byte 7 */ Cid->ProdName2 = CID_Tab[7]; /* Byte 8 */ Cid->ProdRev = CID_Tab[8]; /* Byte 9 */ Cid->ProdSN = CID_Tab[9] << 24; /* Byte 10 */ Cid->ProdSN |= CID_Tab[10] << 16; /* Byte 11 */ Cid->ProdSN |= CID_Tab[11] << 8; /* Byte 12 */ Cid->ProdSN |= CID_Tab[12]; /* Byte 13 */ Cid->Reserved1 |= (CID_Tab[13] & 0xF0) >> 4; Cid->ManufactDate = (CID_Tab[13] & 0x0F) << 8; /* Byte 14 */ Cid->ManufactDate |= CID_Tab[14]; /* Byte 15 */ Cid->CID_CRC = (CID_Tab[15] & 0xFE) >> 1; Cid->Reserved2 = 1; retr = BSP_SD_OK; } } /* Send dummy byte: 8 Clock pulses of delay */ SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Return the reponse */ return retr; } /** * @brief Sends 5 bytes command to the SD card and get response * @param Cmd: The user expected command to send to SD card. * @param Arg: The command argument. * @param Crc: The CRC. * @param Answer: SD_ANSWER_NOT_EXPECTED or SD_ANSWER_EXPECTED * @retval SD status */ SD_CmdAnswer_typedef SD_SendCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Answer) { uint8_t frame[SD_CMD_LENGTH], frameout[SD_CMD_LENGTH]; SD_CmdAnswer_typedef retr = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; /* R1 Lenght = NCS(0)+ 6 Bytes command + NCR(min1 max8) + 1 Bytes answer + NEC(0) = 15bytes */ /* R1b identical to R1 + Busy information */ /* R2 Lenght = NCS(0)+ 6 Bytes command + NCR(min1 max8) + 2 Bytes answer + NEC(0) = 16bytes */ /* Prepare Frame to send */ frame[0] = (Cmd | 0x40); /* Construct byte 1 */ frame[1] = (uint8_t)(Arg >> 24); /* Construct byte 2 */ frame[2] = (uint8_t)(Arg >> 16); /* Construct byte 3 */ frame[3] = (uint8_t)(Arg >> 8); /* Construct byte 4 */ frame[4] = (uint8_t)(Arg); /* Construct byte 5 */ frame[5] = (Crc | 0x01); /* Construct byte 6 */ /* Send the command */ SD_IO_CSState(0); SD_IO_WriteReadData(frame, frameout, SD_CMD_LENGTH); /* Send the Cmd bytes */ switch(Answer) { case SD_ANSWER_R1_EXPECTED: retr.r1 = SD_ReadData(); break; case SD_ANSWER_R1B_EXPECTED: retr.r1 = SD_ReadData(); retr.r2 = SD_IO_WriteByte(SD_DUMMY_BYTE); /* Set CS High */ SD_IO_CSState(1); furi_delay_us(1000); /* Set CS Low */ SD_IO_CSState(0); /* Wait IO line return 0xFF */ while(SD_IO_WriteByte(SD_DUMMY_BYTE) != 0xFF) ; break; case SD_ANSWER_R2_EXPECTED: retr.r1 = SD_ReadData(); retr.r2 = SD_IO_WriteByte(SD_DUMMY_BYTE); break; case SD_ANSWER_R3_EXPECTED: case SD_ANSWER_R7_EXPECTED: retr.r1 = SD_ReadData(); retr.r2 = SD_IO_WriteByte(SD_DUMMY_BYTE); retr.r3 = SD_IO_WriteByte(SD_DUMMY_BYTE); retr.r4 = SD_IO_WriteByte(SD_DUMMY_BYTE); retr.r5 = SD_IO_WriteByte(SD_DUMMY_BYTE); break; default: break; } return retr; } /** * @brief Gets the SD card data response and check the busy flag. * @param None * @retval The SD status: Read data response xxx01 * - status 010: Data accecpted * - status 101: Data rejected due to a crc error * - status 110: Data rejected due to a Write error. * - status 111: Data rejected due to other error. */ uint8_t SD_GetDataResponse(void) { uint8_t dataresponse; uint8_t rvalue = SD_DATA_OTHER_ERROR; dataresponse = SD_IO_WriteByte(SD_DUMMY_BYTE); SD_IO_WriteByte(SD_DUMMY_BYTE); /* read the busy response byte*/ /* Mask unused bits */ switch(dataresponse & 0x1F) { case SD_DATA_OK: rvalue = SD_DATA_OK; /* Set CS High */ SD_IO_CSState(1); /* Set CS Low */ SD_IO_CSState(0); /* Wait IO line return 0xFF */ while(SD_IO_WriteByte(SD_DUMMY_BYTE) != 0xFF) ; break; case SD_DATA_CRC_ERROR: rvalue = SD_DATA_CRC_ERROR; break; case SD_DATA_WRITE_ERROR: rvalue = SD_DATA_WRITE_ERROR; break; default: break; } /* Return response */ return rvalue; } /** * @brief Put the SD in Idle state. * @param None * @retval SD status */ uint8_t SD_GoIdleState(void) { SD_CmdAnswer_typedef response; __IO uint8_t counter; /* Send CMD0 (SD_CMD_GO_IDLE_STATE) to put SD in SPI mode and wait for In Idle State Response (R1 Format) equal to 0x01 */ counter = 0; do { counter++; response = SD_SendCmd(SD_CMD_GO_IDLE_STATE, 0, 0x95, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(counter >= SD_MAX_TRY) { return BSP_SD_ERROR; } } while(response.r1 != SD_R1_IN_IDLE_STATE); /* Send CMD8 (SD_CMD_SEND_IF_COND) to check the power supply status and wait until response (R7 Format) equal to 0xAA and */ response = SD_SendCmd(SD_CMD_SEND_IF_COND, 0x1AA, 0x87, SD_ANSWER_R7_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if((response.r1 & SD_R1_ILLEGAL_COMMAND) == SD_R1_ILLEGAL_COMMAND) { /* initialise card V1 */ counter = 0; do { counter++; /* initialise card V1 */ /* Send CMD55 (SD_CMD_APP_CMD) before any ACMD command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_APP_CMD, 0x00000000, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Send ACMD41 (SD_CMD_SD_APP_OP_COND) to initialize SDHC or SDXC cards: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_SD_APP_OP_COND, 0x00000000, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(counter >= SD_MAX_TRY) { return BSP_SD_ERROR; } } while(response.r1 == SD_R1_IN_IDLE_STATE); flag_SDHC = 0; } else if(response.r1 == SD_R1_IN_IDLE_STATE) { /* initialise card V2 */ counter = 0; do { counter++; /* Send CMD55 (SD_CMD_APP_CMD) before any ACMD command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_APP_CMD, 0, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); /* Send ACMD41 (SD_CMD_SD_APP_OP_COND) to initialize SDHC or SDXC cards: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_SD_APP_OP_COND, 0x40000000, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(counter >= SD_MAX_TRY) { return BSP_SD_ERROR; } } while(response.r1 == SD_R1_IN_IDLE_STATE); if((response.r1 & SD_R1_ILLEGAL_COMMAND) == SD_R1_ILLEGAL_COMMAND) { counter = 0; do { counter++; /* Send CMD55 (SD_CMD_APP_CMD) before any ACMD command: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_APP_CMD, 0, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(response.r1 != SD_R1_IN_IDLE_STATE) { return BSP_SD_ERROR; } /* Send ACMD41 (SD_CMD_SD_APP_OP_COND) to initialize SDHC or SDXC cards: R1 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_SD_APP_OP_COND, 0x00000000, 0xFF, SD_ANSWER_R1_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(counter >= SD_MAX_TRY) { return BSP_SD_ERROR; } } while(response.r1 == SD_R1_IN_IDLE_STATE); } /* Send CMD58 (SD_CMD_READ_OCR) to initialize SDHC or SDXC cards: R3 response (0x00: no errors) */ response = SD_SendCmd(SD_CMD_READ_OCR, 0x00000000, 0xFF, SD_ANSWER_R3_EXPECTED); SD_IO_CSState(1); SD_IO_WriteByte(SD_DUMMY_BYTE); if(response.r1 != SD_R1_NO_ERROR) { return BSP_SD_ERROR; } flag_SDHC = (response.r2 & 0x40) >> 6; } else { return BSP_SD_ERROR; } return BSP_SD_OK; } /** * @brief Waits a data until a value different from SD_DUMMY_BITE * @param None * @retval the value read */ uint8_t SD_ReadData(void) { uint8_t timeout = 0x08; uint8_t readvalue; /* Check if response is got or a timeout is happen */ do { readvalue = SD_IO_WriteByte(SD_DUMMY_BYTE); timeout--; } while((readvalue == SD_DUMMY_BYTE) && timeout); /* Right response got */ return readvalue; } /** * @brief Waits a data from the SD card * @param data : Expected data from the SD card * @retval BSP_SD_OK or BSP_SD_TIMEOUT */ uint8_t SD_WaitData(uint8_t data) { uint16_t timeout = 0xFFFF; uint8_t readvalue; /* Check if response is got or a timeout is happen */ do { readvalue = SD_IO_WriteByte(SD_DUMMY_BYTE); timeout--; } while((readvalue != data) && timeout); if(timeout == 0) { /* After time out */ return BSP_SD_TIMEOUT; } /* Right response got */ return BSP_SD_OK; } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/