#include "subghz_protocol_came_atomo.h" #include "subghz_protocol_common.h" #include struct SubGhzProtocolCameAtomo { SubGhzProtocolCommon common; ManchesterState manchester_saved_state; }; typedef enum { CameAtomoDecoderStepReset = 0, CameAtomoDecoderStepDecoderData, } CameAtomoDecoderStep; SubGhzProtocolCameAtomo* subghz_protocol_came_atomo_alloc() { SubGhzProtocolCameAtomo* instance = furi_alloc(sizeof(SubGhzProtocolCameAtomo)); instance->common.name = "CAME Atomo"; instance->common.code_min_count_bit_for_found = 62; instance->common.te_short = 600; instance->common.te_long = 1200; instance->common.te_delta = 250; instance->common.type_protocol = SubGhzProtocolCommonTypeStatic; instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_atomo_to_str; // instance->common.to_save_string = // (SubGhzProtocolCommonGetStrSave)subghz_protocol_came_atomo_to_save_str; //instance->common.to_load_protocol_from_file = // (SubGhzProtocolCommonLoadFromFile)subghz_protocol_came_atomo_to_load_protocol_from_file; instance->common.to_load_protocol = (SubGhzProtocolCommonLoadFromRAW)subghz_decoder_came_atomo_to_load_protocol; // instance->common.get_upload_protocol = // (SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_came_atomo_send_key; return instance; } void subghz_protocol_came_atomo_free(SubGhzProtocolCameAtomo* instance) { furi_assert(instance); free(instance); } /** Analysis of received data * * @param instance SubGhzProtocolCameAtomo instance */ void subghz_protocol_came_atomo_remote_controller(SubGhzProtocolCameAtomo* instance) { } void subghz_protocol_came_atomo_reset(SubGhzProtocolCameAtomo* instance) { instance->common.parser_step = CameAtomoDecoderStepReset; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); } void subghz_protocol_came_atomo_parse( SubGhzProtocolCameAtomo* instance, bool level, uint32_t duration) { ManchesterEvent event = ManchesterEventReset; switch(instance->common.parser_step) { case CameAtomoDecoderStepReset: if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 65) < instance->common.te_delta * 20)) { //Found header CAME instance->common.parser_step = CameAtomoDecoderStepDecoderData; instance->common.code_found = 0; instance->common.code_count_bit = 1; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventShortLow, &instance->manchester_saved_state, NULL); } else { instance->common.parser_step = CameAtomoDecoderStepReset; } break; case CameAtomoDecoderStepDecoderData: if(!level) { if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) { event = ManchesterEventShortLow; } else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) { event = ManchesterEventLongLow; } else if(duration >= (instance->common.te_long * 2 + instance->common.te_delta)) { if(instance->common.code_count_bit >= instance->common.code_min_count_bit_for_found) { instance->common.code_last_found = instance->common.code_found; instance->common.code_last_count_bit = instance->common.code_count_bit; // uint32_t code_found_hi = instance->common.code_last_found >> 32; // uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff; // uint64_t code_found_reverse = subghz_protocol_common_reverse_key( // instance->common.code_last_found, instance->common.code_last_count_bit); // uint32_t code_found_reverse_hi = code_found_reverse >> 32; // uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; // FURI_LOG_I( // "ATOMO", // "%08lX%08lX %08lX%08lX %d", // code_found_hi, // code_found_lo, // code_found_reverse_hi, // code_found_reverse_lo, // instance->common.code_last_count_bit); if(instance->common.callback) instance->common.callback( (SubGhzProtocolCommon*)instance, instance->common.context); } instance->common.code_found = 0; instance->common.code_count_bit = 1; manchester_advance( instance->manchester_saved_state, ManchesterEventReset, &instance->manchester_saved_state, NULL); manchester_advance( instance->manchester_saved_state, ManchesterEventShortLow, &instance->manchester_saved_state, NULL); } else { instance->common.parser_step = CameAtomoDecoderStepReset; } } else { if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) { event = ManchesterEventShortHigh; } else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) { event = ManchesterEventLongHigh; } else { instance->common.parser_step = CameAtomoDecoderStepReset; } } if(event != ManchesterEventReset) { bool data; bool data_ok = manchester_advance( instance->manchester_saved_state, event, &instance->manchester_saved_state, &data); if(data_ok) { instance->common.code_found = (instance->common.code_found << 1) | !data; instance->common.code_count_bit++; } } break; } } void subghz_protocol_came_atomo_to_str(SubGhzProtocolCameAtomo* instance, string_t output) { uint32_t code_found_hi = instance->common.code_last_found >> 32; uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff; string_cat_printf( output, "%s %dbit\r\n" "Key:0x%lX%08lX\r\n", instance->common.name, instance->common.code_last_count_bit, code_found_hi, code_found_lo); } // void subghz_protocol_came_atomo_to_save_str(SubGhzProtocolCameAtomo* instance, string_t output) { // string_printf( // output, // "Protocol: %s\n" // "Bit: %d\n" // "Key: %08lX%08lX\r\n", // instance->common.name, // instance->common.code_last_count_bit, // (uint32_t)(instance->common.code_last_found >> 32), // (uint32_t)(instance->common.code_last_found & 0xFFFFFFFF)); // } // bool subghz_protocol_came_atomo_to_load_protocol_from_file( // FileWorker* file_worker, // SubGhzProtocolCameAtomo* instance) { // bool loaded = false; // string_t temp_str; // string_init(temp_str); // int res = 0; // int data = 0; // do { // // Read and parse bit data from 2nd line // if(!file_worker_read_until(file_worker, temp_str, '\n')) { // break; // } // res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data); // if(res != 1) { // break; // } // instance->common.code_last_count_bit = (uint8_t)data; // // Read and parse key data from 3nd line // if(!file_worker_read_until(file_worker, temp_str, '\n')) { // break; // } // // strlen("Key: ") = 5 // string_right(temp_str, 5); // uint8_t buf_key[8] = {0}; // if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)) { // break; // } // for(uint8_t i = 0; i < 8; i++) { // instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i]; // } // loaded = true; // } while(0); // string_clear(temp_str); // subghz_protocol_came_atomo_remote_controller(instance); // return loaded; // } void subghz_decoder_came_atomo_to_load_protocol(SubGhzProtocolCameAtomo* instance, void* context) { furi_assert(context); furi_assert(instance); SubGhzProtocolCommonLoad* data = context; instance->common.code_last_found = data->code_found; instance->common.code_last_count_bit = data->code_count_bit; subghz_protocol_came_atomo_remote_controller(instance); }