#include "subghz_protocol_came.h" #include "subghz_protocol_common.h" /* * Help * https://phreakerclub.com/447 * */ struct SubGhzProtocolCame { SubGhzProtocolCommon common; }; SubGhzProtocolCame* subghz_protocol_came_alloc() { SubGhzProtocolCame* instance = furi_alloc(sizeof(SubGhzProtocolCame)); instance->common.name = "CAME"; instance->common.code_min_count_bit_for_found = 12; instance->common.te_short = 320; instance->common.te_long = 640; instance->common.te_delta = 150; instance->common.type_protocol = TYPE_PROTOCOL_STATIC; instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_to_str; instance->common.to_save_string = (SubGhzProtocolCommonGetStrSave)subghz_protocol_came_to_save_str; instance->common.to_load_protocol= (SubGhzProtocolCommonLoad)subghz_protocol_came_to_load_protocol; instance->common.get_upload_protocol = (SubGhzProtocolEncoderCommonGetUpLoad)subghz_protocol_came_send_key; return instance; } void subghz_protocol_came_free(SubGhzProtocolCame* instance) { furi_assert(instance); free(instance); } bool subghz_protocol_came_send_key(SubGhzProtocolCame* instance, SubGhzProtocolEncoderCommon* encoder){ furi_assert(instance); furi_assert(encoder); size_t index = 0; encoder->size_upload =(instance->common.code_last_count_bit * 2) + 2; if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false; //Send header encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short * 36); //Send start bit encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); //Send key data for (uint8_t i = instance->common.code_last_count_bit; i > 0; i--) { if(bit_read(instance->common.code_last_found, i - 1)){ //send bit 1 encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_long); encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_short); }else{ //send bit 0 encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->common.te_short); encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->common.te_long); } } return true; } void subghz_protocol_came_reset(SubGhzProtocolCame* instance) { instance->common.parser_step = 0; } void subghz_protocol_came_parse(SubGhzProtocolCame* instance, bool level, uint32_t duration) { switch (instance->common.parser_step) { case 0: if ((!level) && (DURATION_DIFF(duration, instance->common.te_short * 51)< instance->common.te_delta * 51)) { //Need protocol 36 te_short //Found header CAME instance->common.parser_step = 1; } else { instance->common.parser_step = 0; } break; case 1: if (!level) { break; } else if (DURATION_DIFF(duration, instance->common.te_short)< instance->common.te_delta) { //Found start bit CAME instance->common.parser_step = 2; instance->common.code_found = 0; instance->common.code_count_bit = 0; } else { instance->common.parser_step = 0; } break; case 2: if (!level) { //save interval if (duration >= (instance->common.te_short * 4)) { instance->common.parser_step = 1; if (instance->common.code_count_bit>= instance->common.code_min_count_bit_for_found) { instance->common.serial = 0x0; instance->common.btn = 0x0; instance->common.code_last_found = instance->common.code_found; instance->common.code_last_count_bit = instance->common.code_count_bit; if (instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context); } break; } instance->common.te_last = duration; instance->common.parser_step = 3; } else { instance->common.parser_step = 0; } break; case 3: if (level) { if ((DURATION_DIFF(instance->common.te_last,instance->common.te_short) < instance->common.te_delta) && (DURATION_DIFF(duration, instance->common.te_long)< instance->common.te_delta)) { subghz_protocol_common_add_bit(&instance->common, 0); instance->common.parser_step = 2; } else if ((DURATION_DIFF(instance->common.te_last,instance->common.te_long)< instance->common.te_delta) && (DURATION_DIFF(duration, instance->common.te_short)< instance->common.te_delta)) { subghz_protocol_common_add_bit(&instance->common, 1); instance->common.parser_step = 2; } else instance->common.parser_step = 0; } else { instance->common.parser_step = 0; } break; } } void subghz_protocol_came_to_str(SubGhzProtocolCame* instance, string_t output) { uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_common_reverse_key( instance->common.code_last_found, instance->common.code_last_count_bit); uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s %d Bit\r\n" " KEY:0x%08lX\r\n" " YEK:0x%08lX\r\n", instance->common.name, instance->common.code_last_count_bit, code_found_lo, code_found_reverse_lo ); } void subghz_protocol_came_to_save_str(SubGhzProtocolCame* instance, string_t output) { string_printf( output, "Protocol: %s\n" "Bit: %d\n" "Key: %08lX\n", instance->common.name, instance->common.code_last_count_bit, (uint32_t)(instance->common.code_last_found & 0x00000000ffffffff)); } bool subghz_protocol_came_to_load_protocol(FileWorker* file_worker, SubGhzProtocolCame* instance){ bool loaded = false; string_t temp_str; string_init(temp_str); int res = 0; int data = 0; do { // Read and parse bit data from 2nd line if(!file_worker_read_until(file_worker, temp_str, '\n')) { break; } res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data); if(res != 1) { break; } instance->common.code_last_count_bit = (uint8_t)data; // Read and parse key data from 3nd line if(!file_worker_read_until(file_worker, temp_str, '\n')) { break; } uint32_t temp_key = 0; res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key); if(res != 1) { break; } instance->common.code_last_found = (uint64_t)temp_key; loaded = true; } while(0); string_clear(temp_str); return loaded; }