#include "subghz_protocol_common.h" #include #include SubGhzProtocolEncoderCommon* subghz_protocol_encoder_common_alloc() { SubGhzProtocolEncoderCommon* instance = furi_alloc(sizeof(SubGhzProtocolEncoderCommon)); instance->upload = furi_alloc(SUBGHZ_ENCODER_UPLOAD_MAX_SIZE * sizeof(LevelDuration)); instance->start = true; instance->repeat = 10; //default number of repeat return instance; } void subghz_protocol_encoder_common_free(SubGhzProtocolEncoderCommon* instance) { furi_assert(instance); free(instance->upload); free(instance); } size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolEncoderCommon* instance) { furi_assert(instance); return instance->repeat; } LevelDuration subghz_protocol_encoder_common_yield(void* context) { SubGhzProtocolEncoderCommon* instance = context; if(instance->repeat == 0){ return level_duration_reset(); } LevelDuration ret = instance->upload[instance->front]; if(++instance->front == instance->size_upload) { instance->repeat--; instance->front = 0; } return ret; } void subghz_protocol_common_add_bit(SubGhzProtocolCommon *common, uint8_t bit){ common->code_found = common->code_found << 1 | bit; common->code_count_bit++; } bool subghz_protocol_common_check_interval(SubGhzProtocolCommon *common, uint32_t duration, uint16_t duration_check) { if ((duration_check >= (duration - common->te_delta))&&(duration_check <= (duration + common->te_delta))){ return true; } else { return false; } } uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit){ uint64_t key_reverse=0; for(uint8_t i=0; icallback = callback; common->context = context; } void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output) { if (instance->to_string) { instance->to_string(instance, output); } else { uint32_t code_found_hi = instance->code_found >> 32; uint32_t code_found_lo = instance->code_found & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_common_reverse_key(instance->code_found, instance->code_count_bit); uint32_t code_found_reverse_hi = code_found_reverse>>32; uint32_t code_found_reverse_lo = code_found_reverse&0x00000000ffffffff; if (code_found_hi>0) { string_cat_printf( output, "Protocol %s, %d Bit\r\n" " KEY:0x%lX%08lX\r\n" " YEK:0x%lX%08lX\r\n" " SN:0x%05lX BTN:%02X\r\n", instance->name, instance->code_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, code_found_reverse_lo, instance->serial, instance->btn ); } else { string_cat_printf( output, "Protocol %s, %d Bit\r\n" " KEY:0x%lX%lX\r\n" " YEK:0x%lX%lX\r\n" " SN:0x%05lX BTN:%02X\r\n", instance->name, instance->code_count_bit, code_found_hi, code_found_lo, code_found_reverse_hi, code_found_reverse_lo, instance->serial, instance->btn ); } } } bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len) { string_strim(str); uint8_t nibble_high = 0; uint8_t nibble_low = 0; bool parsed = true; for(uint16_t i = 0; i < len; i++) { if(hex_char_to_hex_nibble(string_get_char(str, 0), &nibble_high) && hex_char_to_hex_nibble(string_get_char(str, 1), &nibble_low)) { buff[i] = (nibble_high << 4) | nibble_low; if(string_size(str)>2){ string_right(str, 2); }else if(i