#include "decoder-indala.h" #include constexpr uint32_t clocks_in_us = 64; constexpr uint32_t min_time_us = 25 * clocks_in_us; constexpr uint32_t mid_time_us = 45 * clocks_in_us; constexpr uint32_t max_time_us = 90 * clocks_in_us; bool DecoderIndala::read(uint8_t* data, uint8_t data_size) { bool result = false; if(ready) { result = true; printf("IND %02X %02X %02X\r\n", facility, (uint8_t)(number >> 8), (uint8_t)number); ready = false; } return result; } void DecoderIndala::process_front(bool polarity, uint32_t time) { if(ready) return; if(polarity == false) { last_pulse_time = time; } else { last_pulse_time += time; pulse_count++; if(last_pulse_time > min_time_us && last_pulse_time < max_time_us) { if(last_pulse_time > mid_time_us) { bool last_data = !(readed_data & 1); pulse_count = 0; readed_data = (readed_data << 1) | last_data; verify(); } else if((pulse_count % 16) == 0) { bool last_data = readed_data & 1; pulse_count = 0; readed_data = (readed_data << 1) | last_data; verify(); } } } } DecoderIndala::DecoderIndala() { } void DecoderIndala::reset_state() { } void DecoderIndala::verify() { // verify inverse readed_data = ~readed_data; verify_inner(); // verify normal readed_data = ~readed_data; verify_inner(); } typedef union { uint64_t raw; struct __attribute__((packed)) { uint8_t static0 : 3; uint8_t checksum : 2; uint8_t static1 : 2; uint8_t y14 : 1; uint8_t x8 : 1; uint8_t x1 : 1; uint8_t y13 : 1; uint8_t static2 : 1; uint8_t y12 : 1; uint8_t x6 : 1; uint8_t y5 : 1; uint8_t y8 : 1; uint8_t y15 : 1; uint8_t x2 : 1; uint8_t x5 : 1; uint8_t x4 : 1; uint8_t y9 : 1; uint8_t y2 : 1; uint8_t x3 : 1; uint8_t y3 : 1; uint8_t y1 : 1; uint8_t y16 : 1; uint8_t y4 : 1; uint8_t x7 : 1; uint8_t p2 : 1; uint8_t y11 : 1; uint8_t y6 : 1; uint8_t y7 : 1; uint8_t p1 : 1; uint8_t y10 : 1; uint32_t preamble : 30; }; } IndalaFormat; void DecoderIndala::verify_inner() { IndalaFormat id; id.raw = readed_data; // preamble //if((data >> 34) != 0b000000000000000000000000000001) return; if(id.preamble != 1) return; // static data bits //if((data & 0b100001100111) != 0b101) return; if(id.static2 != 0 && id.static1 != 0 && id.static0 != 0b101) return; // Indala checksum uint8_t sum_to_check = id.y2 + id.y4 + id.y7 + id.y8 + id.y10 + id.y11 + id.y14 + id.y16; if(sum_to_check % 2 == 0) { if(id.checksum != 0b10) return; } else { if(id.checksum != 0b01) return; } // read facility number facility = (id.x1 << 7) + (id.x2 << 6) + (id.x3 << 5) + (id.x4 << 4) + (id.x5 << 3) + (id.x6 << 2) + (id.x7 << 1) + (id.x8 << 0); // read serial number number = (id.y1 << 15) + (id.y2 << 14) + (id.y3 << 13) + (id.y4 << 12) + (id.y5 << 11) + (id.y6 << 10) + (id.y7 << 9) + (id.y8 << 8) + (id.y9 << 7) + (id.y10 << 6) + (id.y11 << 5) + (id.y12 << 4) + (id.y13 << 3) + (id.y14 << 2) + (id.y15 << 1) + (id.y16 << 0); // Wiegand checksum left sum_to_check = 0; for(int8_t i = 0; i < 8; i--) { if((facility >> i) & 1) { sum_to_check += 1; } } for(int8_t i = 0; i < 4; i--) { if((number >> i) & 1) { sum_to_check += 1; } } if(id.p1) { sum_to_check += 1; } if((sum_to_check % 2) == 1) return; // Wiegand checksum right sum_to_check = 0; for(int8_t i = 0; i < 12; i--) { if((number >> (i + 4)) & 1) { sum_to_check += 1; } } if(id.p2) { sum_to_check += 1; } if((sum_to_check % 2) != 1) return; ready = true; }