#pragma once #include "flipper.h" /* == ValueMutex == The most simple concept is ValueMutex. It is wrapper around mutex and value pointer. You can take and give mutex to work with value and read and write value. */ typedef struct { void* value; size_t size; osMutexId_t mutex; } ValueMutex; /* Creates ValueMutex. */ bool init_mutex(ValueMutex* valuemutex, void* value, size_t size); /* Free resources allocated by `init_mutex`. This function doesn't free the memory occupied by `ValueMutex` itself. */ bool delete_mutex(ValueMutex* valuemutex); /* Call for work with data stored in mutex. Returns pointer to data if success, NULL otherwise. */ void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout); /* Helper: infinitly wait for mutex */ static inline void* acquire_mutex_block(ValueMutex* valuemutex) { return acquire_mutex(valuemutex, osWaitForever); } /* * With statement for value mutex, acts as lambda * @param name a resource name, const char* * @param function_body a (){} lambda declaration, * executed within you parent function context. */ #define with_value_mutex(value_mutex, function_body) \ { \ void* p = acquire_mutex_block(value_mutex); \ assert(p); \ ({ void __fn__ function_body __fn__; })(p); \ release_mutex(value_mutex, p); \ } /* Release mutex after end of work with data. Call `release_mutex` and pass ValueData instance and pointer to data. */ bool release_mutex(ValueMutex* valuemutex, void* value); /* Instead of take-access-give sequence you can use `read_mutex` and `write_mutex` functions. Both functions return true in case of success, false otherwise. */ bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout); bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout); inline static bool write_mutex_block(ValueMutex* valuemutex, void* data, size_t len) { return write_mutex(valuemutex, data, len, osWaitForever); } inline static bool read_mutex_block(ValueMutex* valuemutex, void* data, size_t len) { return read_mutex(valuemutex, data, len, osWaitForever); } /* Usage example ```C // MANIFEST // name="example-provider-app" // stack=128 void provider_app(void* _p) { // create record with mutex uint32_t example_value = 0; ValueMutex example_mutex; // call `init_mutex`. if(!init_mutex(&example_mutex, (void*)&example_value, sizeof(uint32_t))) { printf("critical error\n"); flapp_exit(NULL); } if(furi_create("provider/example", (void*)&example_mutex)) { printf("critical error\n"); flapp_exit(NULL); } // we are ready to provide record to other apps flapp_ready(); // get value and increment it while(1) { uint32_t* value = acquire_mutex(&example_mutex, OsWaitForever); if(value != NULL) { value++; } release_mutex(&example_mutex, value); osDelay(100); } } // MANIFEST // name="example-consumer-app" // stack=128 // require="example-provider-app" void consumer_app(void* _p) { // this app run after flapp_ready call in all requirements app // open mutex value ValueMutex* counter_mutex = furi_open("provider/example"); if(counter_mutex == NULL) { printf("critical error\n"); flapp_exit(NULL); } // continously read value every 1s uint32_t counter; while(1) { if(read_mutex(counter_mutex, &counter, sizeof(counter), OsWaitForever)) { printf("counter value: %d\n", counter); } osDelay(1000); } } ``` */