#include "chamberlain_code.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolChamb_Code" #define CHAMBERLAIN_CODE_BIT_STOP 0b0001 #define CHAMBERLAIN_CODE_BIT_1 0b0011 #define CHAMBERLAIN_CODE_BIT_0 0b0111 #define CHAMBERLAIN_7_CODE_MASK 0xF000000FF0F #define CHAMBERLAIN_8_CODE_MASK 0xF00000F00F #define CHAMBERLAIN_9_CODE_MASK 0xF000000000F #define CHAMBERLAIN_7_CODE_MASK_CHECK 0x10000001101 #define CHAMBERLAIN_8_CODE_MASK_CHECK 0x1000001001 #define CHAMBERLAIN_9_CODE_MASK_CHECK 0x10000000001 #define CHAMBERLAIN_7_CODE_DIP_PATTERN "%c%c%c%c%c%c%c" #define CHAMBERLAIN_7_CODE_DATA_TO_DIP(dip) \ (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \ (dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \ (dip & 0x0001 ? '1' : '0') #define CHAMBERLAIN_8_CODE_DIP_PATTERN "%c%c%c%c%cx%c%c" #define CHAMBERLAIN_8_CODE_DATA_TO_DIP(dip) \ (dip & 0x0080 ? '1' : '0'), (dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), \ (dip & 0x0010 ? '1' : '0'), (dip & 0x0008 ? '1' : '0'), (dip & 0x0001 ? '1' : '0'), \ (dip & 0x0002 ? '1' : '0') #define CHAMBERLAIN_9_CODE_DIP_PATTERN "%c%c%c%c%c%c%c%c%c" #define CHAMBERLAIN_9_CODE_DATA_TO_DIP(dip) \ (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), (dip & 0x0040 ? '1' : '0'), \ (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), (dip & 0x0008 ? '1' : '0'), \ (dip & 0x0001 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), (dip & 0x0004 ? '1' : '0') static const SubGhzBlockConst subghz_protocol_chamb_code_const = { .te_short = 1000, .te_long = 3000, .te_delta = 200, .min_count_bit_for_found = 10, }; struct SubGhzProtocolDecoderChamb_Code { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderChamb_Code { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { Chamb_CodeDecoderStepReset = 0, Chamb_CodeDecoderStepFoundStartBit, Chamb_CodeDecoderStepSaveDuration, Chamb_CodeDecoderStepCheckDuration, } Chamb_CodeDecoderStep; const SubGhzProtocolDecoder subghz_protocol_chamb_code_decoder = { .alloc = subghz_protocol_decoder_chamb_code_alloc, .free = subghz_protocol_decoder_chamb_code_free, .feed = subghz_protocol_decoder_chamb_code_feed, .reset = subghz_protocol_decoder_chamb_code_reset, .get_hash_data = subghz_protocol_decoder_chamb_code_get_hash_data, .serialize = subghz_protocol_decoder_chamb_code_serialize, .deserialize = subghz_protocol_decoder_chamb_code_deserialize, .get_string = subghz_protocol_decoder_chamb_code_get_string, }; const SubGhzProtocolEncoder subghz_protocol_chamb_code_encoder = { .alloc = subghz_protocol_encoder_chamb_code_alloc, .free = subghz_protocol_encoder_chamb_code_free, .deserialize = subghz_protocol_encoder_chamb_code_deserialize, .stop = subghz_protocol_encoder_chamb_code_stop, .yield = subghz_protocol_encoder_chamb_code_yield, }; const SubGhzProtocol subghz_protocol_chamb_code = { .name = SUBGHZ_PROTOCOL_CHAMB_CODE_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_chamb_code_decoder, .encoder = &subghz_protocol_chamb_code_encoder, }; void* subghz_protocol_encoder_chamb_code_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderChamb_Code* instance = malloc(sizeof(SubGhzProtocolEncoderChamb_Code)); instance->base.protocol = &subghz_protocol_chamb_code; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 24; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_chamb_code_free(void* context) { furi_assert(context); SubGhzProtocolEncoderChamb_Code* instance = context; free(instance->encoder.upload); free(instance); } static uint64_t subghz_protocol_chamb_bit_to_code(uint64_t data, uint8_t size) { uint64_t data_res = 0; for(uint8_t i = 0; i < size; i++) { if(!(bit_read(data, size - i - 1))) { data_res = data_res << 4 | CHAMBERLAIN_CODE_BIT_0; } else { data_res = data_res << 4 | CHAMBERLAIN_CODE_BIT_1; } } return data_res; } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderChamb_Code instance * @return true On success */ static bool subghz_protocol_encoder_chamb_code_get_upload(SubGhzProtocolEncoderChamb_Code* instance) { furi_assert(instance); uint64_t data = subghz_protocol_chamb_bit_to_code( instance->generic.data, instance->generic.data_count_bit); switch(instance->generic.data_count_bit) { case 7: data = ((data >> 4) << 16) | (data & 0xF) << 4 | CHAMBERLAIN_7_CODE_MASK_CHECK; break; case 8: data = ((data >> 12) << 16) | (data & 0xFF) << 4 | CHAMBERLAIN_8_CODE_MASK_CHECK; break; case 9: data = (data << 4) | CHAMBERLAIN_9_CODE_MASK_CHECK; break; default: furi_crash(TAG " unknown protocol."); return false; break; } #define UPLOAD_HEX_DATA_SIZE 10 uint8_t upload_hex_data[UPLOAD_HEX_DATA_SIZE] = {0}; size_t upload_hex_count_bit = 0; //insert guard time for(uint8_t i = 0; i < 36; i++) { subghz_protocol_blocks_set_bit_array( 0, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE); } //insert data switch(instance->generic.data_count_bit) { case 7: case 9: for(uint8_t i = 44; i > 0; i--) { if(!bit_read(data, i - 1)) { subghz_protocol_blocks_set_bit_array( 0, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE); } else { subghz_protocol_blocks_set_bit_array( 1, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE); } } break; case 8: for(uint8_t i = 40; i > 0; i--) { if(!bit_read(data, i - 1)) { subghz_protocol_blocks_set_bit_array( 0, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE); } else { subghz_protocol_blocks_set_bit_array( 1, upload_hex_data, upload_hex_count_bit++, UPLOAD_HEX_DATA_SIZE); } } break; } instance->encoder.size_upload = subghz_protocol_blocks_get_upload( upload_hex_data, upload_hex_count_bit, instance->encoder.upload, instance->encoder.size_upload, subghz_protocol_chamb_code_const.te_short); return true; } bool subghz_protocol_encoder_chamb_code_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderChamb_Code* instance = context; bool res = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(instance->generic.data_count_bit > subghz_protocol_chamb_code_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_chamb_code_get_upload(instance); instance->encoder.is_running = true; res = true; } while(false); return res; } void subghz_protocol_encoder_chamb_code_stop(void* context) { SubGhzProtocolEncoderChamb_Code* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_chamb_code_yield(void* context) { SubGhzProtocolEncoderChamb_Code* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_chamb_code_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderChamb_Code* instance = malloc(sizeof(SubGhzProtocolDecoderChamb_Code)); instance->base.protocol = &subghz_protocol_chamb_code; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_chamb_code_free(void* context) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; free(instance); } void subghz_protocol_decoder_chamb_code_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; instance->decoder.parser_step = Chamb_CodeDecoderStepReset; } static bool subghz_protocol_chamb_code_to_bit(uint64_t* data, uint8_t size) { uint64_t data_tmp = data[0]; uint64_t data_res = 0; for(uint8_t i = 0; i < size; i++) { if((data_tmp & 0xF) == CHAMBERLAIN_CODE_BIT_0) { bit_write(data_res, i, 0); } else if((data_tmp & 0xF) == CHAMBERLAIN_CODE_BIT_1) { bit_write(data_res, i, 1); } else { return false; } data_tmp >>= 4; } data[0] = data_res; return true; } static bool subghz_protocol_decoder_chamb_code_check_mask_and_parse( SubGhzProtocolDecoderChamb_Code* instance) { furi_assert(instance); if(instance->decoder.decode_count_bit > subghz_protocol_chamb_code_const.min_count_bit_for_found + 1) return false; if((instance->decoder.decode_data & CHAMBERLAIN_7_CODE_MASK) == CHAMBERLAIN_7_CODE_MASK_CHECK) { instance->decoder.decode_count_bit = 7; instance->decoder.decode_data &= ~CHAMBERLAIN_7_CODE_MASK; instance->decoder.decode_data = (instance->decoder.decode_data >> 12) | ((instance->decoder.decode_data >> 4) & 0xF); } else if( (instance->decoder.decode_data & CHAMBERLAIN_8_CODE_MASK) == CHAMBERLAIN_8_CODE_MASK_CHECK) { instance->decoder.decode_count_bit = 8; instance->decoder.decode_data &= ~CHAMBERLAIN_8_CODE_MASK; instance->decoder.decode_data = instance->decoder.decode_data >> 4 | CHAMBERLAIN_CODE_BIT_0 << 8; //DIP 6 no use } else if( (instance->decoder.decode_data & CHAMBERLAIN_9_CODE_MASK) == CHAMBERLAIN_9_CODE_MASK_CHECK) { instance->decoder.decode_count_bit = 9; instance->decoder.decode_data &= ~CHAMBERLAIN_9_CODE_MASK; instance->decoder.decode_data >>= 4; } else { return false; } return subghz_protocol_chamb_code_to_bit( &instance->decoder.decode_data, instance->decoder.decode_count_bit); } void subghz_protocol_decoder_chamb_code_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; switch(instance->decoder.parser_step) { case Chamb_CodeDecoderStepReset: if((!level) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short * 39) < subghz_protocol_chamb_code_const.te_delta * 20)) { //Found header Chamb_Code instance->decoder.parser_step = Chamb_CodeDecoderStepFoundStartBit; } break; case Chamb_CodeDecoderStepFoundStartBit: if((level) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short) < subghz_protocol_chamb_code_const.te_delta)) { //Found start bit Chamb_Code instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.decode_data = instance->decoder.decode_data << 4 | CHAMBERLAIN_CODE_BIT_STOP; instance->decoder.decode_count_bit++; instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration; } else { instance->decoder.parser_step = Chamb_CodeDecoderStepReset; } break; case Chamb_CodeDecoderStepSaveDuration: if(!level) { //save interval if(duration > subghz_protocol_chamb_code_const.te_short * 5) { if(instance->decoder.decode_count_bit >= subghz_protocol_chamb_code_const.min_count_bit_for_found) { instance->generic.serial = 0x0; instance->generic.btn = 0x0; if(subghz_protocol_decoder_chamb_code_check_mask_and_parse(instance)) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } } instance->decoder.parser_step = Chamb_CodeDecoderStepReset; } else { instance->decoder.te_last = duration; instance->decoder.parser_step = Chamb_CodeDecoderStepCheckDuration; } } else { instance->decoder.parser_step = Chamb_CodeDecoderStepReset; } break; case Chamb_CodeDecoderStepCheckDuration: if(level) { if((DURATION_DIFF( //Found stop bit Chamb_Code instance->decoder.te_last, subghz_protocol_chamb_code_const.te_short * 3) < subghz_protocol_chamb_code_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short) < subghz_protocol_chamb_code_const.te_delta)) { instance->decoder.decode_data = instance->decoder.decode_data << 4 | CHAMBERLAIN_CODE_BIT_STOP; instance->decoder.decode_count_bit++; instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration; } else if( (DURATION_DIFF( instance->decoder.te_last, subghz_protocol_chamb_code_const.te_short * 2) < subghz_protocol_chamb_code_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short * 2) < subghz_protocol_chamb_code_const.te_delta)) { instance->decoder.decode_data = instance->decoder.decode_data << 4 | CHAMBERLAIN_CODE_BIT_1; instance->decoder.decode_count_bit++; instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration; } else if( (DURATION_DIFF( instance->decoder.te_last, subghz_protocol_chamb_code_const.te_short) < subghz_protocol_chamb_code_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_chamb_code_const.te_short * 3) < subghz_protocol_chamb_code_const.te_delta)) { instance->decoder.decode_data = instance->decoder.decode_data << 4 | CHAMBERLAIN_CODE_BIT_0; instance->decoder.decode_count_bit++; instance->decoder.parser_step = Chamb_CodeDecoderStepSaveDuration; } else { instance->decoder.parser_step = Chamb_CodeDecoderStepReset; } } else { instance->decoder.parser_step = Chamb_CodeDecoderStepReset; } break; } } uint8_t subghz_protocol_decoder_chamb_code_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool subghz_protocol_decoder_chamb_code_serialize( void* context, FlipperFormat* flipper_format, SubGhzPresetDefinition* preset) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } bool subghz_protocol_decoder_chamb_code_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; bool ret = false; do { if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) { break; } if(instance->generic.data_count_bit > subghz_protocol_chamb_code_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } ret = true; } while(false); return ret; } void subghz_protocol_decoder_chamb_code_get_string(void* context, string_t output) { furi_assert(context); SubGhzProtocolDecoderChamb_Code* instance = context; uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff; uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key( instance->generic.data, instance->generic.data_count_bit); uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff; string_cat_printf( output, "%s %db\r\n" "Key:0x%03lX\r\n" "Yek:0x%03lX\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, code_found_lo, code_found_reverse_lo); switch(instance->generic.data_count_bit) { case 7: string_cat_printf( output, "DIP:" CHAMBERLAIN_7_CODE_DIP_PATTERN "\r\n", CHAMBERLAIN_7_CODE_DATA_TO_DIP(code_found_lo)); break; case 8: string_cat_printf( output, "DIP:" CHAMBERLAIN_8_CODE_DIP_PATTERN "\r\n", CHAMBERLAIN_8_CODE_DATA_TO_DIP(code_found_lo)); break; case 9: string_cat_printf( output, "DIP:" CHAMBERLAIN_9_CODE_DIP_PATTERN "\r\n", CHAMBERLAIN_9_CODE_DATA_TO_DIP(code_found_lo)); break; default: break; } }