#include "subghz_protocol_princeton.h"
/*
 * Help
 * https://phreakerclub.com/447
 *
 */

#define SUBGHZ_PT_SHORT 400
#define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
#define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
#define SUBGHZ_PT_COUNT_KEY 5
#define SUBGHZ_PT_TIMEOUT 320

#define TAG "SubghzPrinceton"

struct SubGhzEncoderPrinceton {
    uint32_t key;
    uint16_t te;
    size_t repeat;
    size_t front;
    size_t count_key;
    uint32_t time_high;
    uint32_t time_low;
};

typedef enum {
    PrincetonDecoderStepReset = 0,
    PrincetonDecoderStepSaveDuration,
    PrincetonDecoderStepCheckDuration,
} PrincetonDecoderStep;

SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() {
    SubGhzEncoderPrinceton* instance = furi_alloc(sizeof(SubGhzEncoderPrinceton));
    return instance;
}

void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) {
    furi_assert(instance);
    free(instance);
}

void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) {
    SubGhzDecoderPrinceton* pricenton = decoder;
    if((pricenton->te) != 0) {
        instance->te = pricenton->te;
    } else {
        instance->te = SUBGHZ_PT_SHORT;
    }
}

void subghz_encoder_princeton_set(SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat) {
    furi_assert(instance);
    instance->te = SUBGHZ_PT_SHORT;
    instance->key = key;
    instance->repeat = repeat + 1;
    instance->front = 48;
    instance->count_key = SUBGHZ_PT_COUNT_KEY + 7;
    instance->time_high = 0;
    instance->time_low = 0;
}

size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) {
    furi_assert(instance);
    return instance->repeat;
}

void subghz_encoder_princeton_print_log(void* context) {
    SubGhzEncoderPrinceton* instance = context;
    float duty_cycle =
        ((float)instance->time_high / (instance->time_high + instance->time_low)) * 100;
    FURI_LOG_I(
        TAG "Encoder",
        "Radio ON=%dus, OFF=%dus, DutyCycle=%d,%d%%",
        instance->time_high,
        instance->time_low,
        (uint32_t)duty_cycle,
        (uint32_t)((duty_cycle - (uint32_t)duty_cycle) * 100));
}

LevelDuration subghz_encoder_princeton_yield(void* context) {
    SubGhzEncoderPrinceton* instance = context;
    if(instance->repeat == 0) {
        subghz_encoder_princeton_print_log(instance);
        return level_duration_reset();
    }

    size_t bit = instance->front / 2;
    bool level = !(instance->front % 2);

    LevelDuration ret;
    if(bit < 24) {
        uint8_t byte = bit / 8;
        uint8_t bit_in_byte = bit % 8;
        bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
        if(value) {
            ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
            if(level)
                instance->time_high += instance->te * 3;
            else
                instance->time_low += instance->te;
        } else {
            ret = level_duration_make(level, level ? instance->te : instance->te * 3);
            if(level)
                instance->time_high += instance->te;
            else
                instance->time_low += instance->te * 3;
        }
    } else {
        if(--instance->count_key != 0) {
            ret = level_duration_make(level, level ? instance->te : instance->te * 30);
            if(level)
                instance->time_high += instance->te;
            else
                instance->time_low += instance->te * 30;
        } else {
            instance->count_key = SUBGHZ_PT_COUNT_KEY + 6;
            instance->front = 48;
            ret = level_duration_make(level, level ? instance->te : SUBGHZ_PT_TIMEOUT * 1000);
            if(level)
                instance->time_high += instance->te;
            else
                instance->time_low += SUBGHZ_PT_TIMEOUT * 1000;
        }
    }

    instance->front++;
    if(instance->front == 50) {
        instance->repeat--;
        instance->front = 0;
    }

    return ret;
}

SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) {
    SubGhzDecoderPrinceton* instance = furi_alloc(sizeof(SubGhzDecoderPrinceton));

    instance->te = SUBGHZ_PT_SHORT;
    instance->common.name = "Princeton";
    instance->common.code_min_count_bit_for_found = 24;
    instance->common.te_short = SUBGHZ_PT_SHORT; //150;
    instance->common.te_long = SUBGHZ_PT_LONG; //450;
    instance->common.te_delta = 250; //50;
    instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
    instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str;
    instance->common.to_save_file =
        (SubGhzProtocolCommonSaveFile)subghz_decoder_princeton_to_save_file;
    instance->common.to_load_protocol_from_file =
        (SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file;
    instance->common.to_load_protocol =
        (SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol;
    instance->common.get_upload_protocol =
        (SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key;

    return instance;
}

void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) {
    furi_assert(instance);
    free(instance);
}

uint16_t subghz_protocol_princeton_get_te(void* context) {
    SubGhzDecoderPrinceton* instance = context;
    return instance->te;
}

bool subghz_protocol_princeton_send_key(
    SubGhzDecoderPrinceton* instance,
    SubGhzProtocolCommonEncoder* encoder) {
    furi_assert(instance);
    furi_assert(encoder);
    size_t index = 0;
    encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
    if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;

    //Send key data
    for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
        if(bit_read(instance->common.code_last_found, i - 1)) {
            //send bit 1
            encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3);
            encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te);
        } else {
            //send bit 0
            encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
            encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3);
        }
    }

    //Send Stop bit
    encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
    //Send PT_GUARD
    encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);

    return true;
}

void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) {
    instance->common.parser_step = PrincetonDecoderStepReset;
}

void subghz_decoder_princeton_parse(
    SubGhzDecoderPrinceton* instance,
    bool level,
    uint32_t duration) {
    switch(instance->common.parser_step) {
    case PrincetonDecoderStepReset:
        if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
                        instance->common.te_delta * 36)) {
            //Found Preambula
            instance->common.parser_step = PrincetonDecoderStepSaveDuration;
            instance->common.code_found = 0;
            instance->common.code_count_bit = 0;
            instance->te = 0;
        }
        break;
    case PrincetonDecoderStepSaveDuration:
        //save duration
        if(level) {
            instance->common.te_last = duration;
            instance->te += duration;
            instance->common.parser_step = PrincetonDecoderStepCheckDuration;
        }
        break;
    case PrincetonDecoderStepCheckDuration:
        if(!level) {
            if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
                instance->common.parser_step = PrincetonDecoderStepSaveDuration;
                if(instance->common.code_count_bit ==
                   instance->common.code_min_count_bit_for_found) {
                    instance->te /= (instance->common.code_count_bit * 4 + 1);

                    instance->common.code_last_found = instance->common.code_found;
                    instance->common.code_last_count_bit = instance->common.code_count_bit;
                    instance->common.serial = instance->common.code_found >> 4;
                    instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F;

                    if(instance->common.callback)
                        instance->common.callback(
                            (SubGhzProtocolCommon*)instance, instance->common.context);
                }
                instance->common.code_found = 0;
                instance->common.code_count_bit = 0;
                instance->te = 0;
                break;
            }

            instance->te += duration;

            if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
                instance->common.te_delta) &&
               (DURATION_DIFF(duration, instance->common.te_long) <
                instance->common.te_delta * 3)) {
                subghz_protocol_common_add_bit(&instance->common, 0);
                instance->common.parser_step = PrincetonDecoderStepSaveDuration;
            } else if(
                (DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
                 instance->common.te_delta * 3) &&
                (DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
                subghz_protocol_common_add_bit(&instance->common, 1);
                instance->common.parser_step = PrincetonDecoderStepSaveDuration;
            } else {
                instance->common.parser_step = PrincetonDecoderStepReset;
            }
        } else {
            instance->common.parser_step = PrincetonDecoderStepReset;
        }
        break;
    }
}

void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) {
    uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;

    uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
        instance->common.code_last_found, instance->common.code_last_count_bit);

    uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;

    string_cat_printf(
        output,
        "%s %dbit\r\n"
        "Key:0x%08lX\r\n"
        "Yek:0x%08lX\r\n"
        "Sn:0x%05lX BTN:%02X\r\n"
        "Te:%dus\r\n",
        instance->common.name,
        instance->common.code_last_count_bit,
        code_found_lo,
        code_found_reverse_lo,
        instance->common.serial,
        instance->common.btn,
        instance->te);
}

bool subghz_decoder_princeton_to_save_file(
    SubGhzDecoderPrinceton* instance,
    FlipperFile* flipper_file) {
    bool res = subghz_protocol_common_to_save_file((SubGhzProtocolCommon*)instance, flipper_file);
    if(res) {
        res = flipper_file_write_uint32(flipper_file, "TE", &instance->te, 1);
        if(!res) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Te");
    }
    return res;
}

bool subghz_decoder_princeton_to_load_protocol_from_file(
    FlipperFile* flipper_file,
    SubGhzDecoderPrinceton* instance,
    const char* file_path) {
    bool loaded = subghz_protocol_common_to_load_protocol_from_file(
        (SubGhzProtocolCommon*)instance, flipper_file);
    if(loaded) {
        loaded = flipper_file_read_uint32(flipper_file, "TE", (uint32_t*)&instance->te, 1);
        if(!loaded) FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing TE");
    }
    return loaded;
}

void subghz_decoder_princeton_to_load_protocol(SubGhzDecoderPrinceton* instance, void* context) {
    furi_assert(context);
    furi_assert(instance);
    SubGhzProtocolCommonLoad* data = context;
    instance->common.code_last_found = data->code_found;
    instance->common.code_last_count_bit = data->code_count_bit;
    instance->te = data->param1;
    instance->common.serial = instance->common.code_last_found >> 4;
    instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
}