#include "flipper.h" #include "cc1101-workaround/cc1101.h" extern "C" void cli_print(const char* str); #define RSSI_DELAY 5000 //rssi delay in micro second #define CHAN_SPA 0.05 // channel spacing int16_t rssi_to_dbm(uint8_t rssi_dec, uint8_t rssiOffset) { int16_t rssi; if(rssi_dec >= 128) { rssi = (int16_t)((int16_t)(rssi_dec - 256) / 2) - rssiOffset; } else { rssi = (rssi_dec / 2) - rssiOffset; } return rssi; } typedef struct { float base_freq; uint8_t reg[3]; // FREQ2, FREQ1, FREQ0 uint8_t first_channel; uint8_t last_channel; uint8_t rssi_offset; } Band; typedef struct { const Band* band; uint16_t channel; } FreqConfig; void setup_freq(CC1101* cc1101, const FreqConfig* config) { // cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL // cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi // cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length // cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off uint32_t freq_reg = config->band->base_freq * 1e6 / (F_OSC / 65536); cc1101->SetFreq((freq_reg >> 16) & 0xFF, (freq_reg >> 8) & 0xFF, (freq_reg)&0xFF); cc1101->SetChannel(config->channel); /* //set test0 to 0x09 cc1101->SpiWriteReg(CC1101_TEST0, 0x09); //set FSCAL2 to 0x2A to force VCO HIGH cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); // perform a manual calibration by issuing SCAL command cc1101->SpiStrobe(CC1101_SCAL); */ } static GpioPin debug_0 = {GPIOB, GPIO_PIN_2}; int16_t rx_rssi(CC1101* cc1101, const FreqConfig* config) { // cc1101->SpiStrobe(CC1101_SFRX); // cc1101->SetReceive(); // uint8_t begin_size = cc1101->SpiReadStatus(CC1101_RXBYTES); // uint8_t rx_status = cc1101->SpiReadStatus(CC1101_MARCSTATE); // delay_us(RSSI_DELAY); // osDelay(15); // uint8_t end_size = cc1101->SpiReadStatus(CC1101_RXBYTES); // 1.4.8) read PKTSTATUS register while the radio is in RX state /*uint8_t _pkt_status = */ // cc1101->SpiReadStatus(CC1101_PKTSTATUS); // 1.4.9) enter IDLE state by issuing a SIDLE command // cc1101->SpiStrobe(CC1101_SIDLE); // //read rssi value and converto to dBm form uint8_t rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI); int16_t rssi_dBm = rssi_to_dbm(rssi_dec, config->band->rssi_offset); /* char buf[256]; sprintf(buf, "status: %d -> %d, rssi: %d\n", rx_status, cc1101->SpiReadStatus(CC1101_MARCSTATE), rssi_dBm); cli_print(buf); sprintf(buf, "begin: %d, end: %d\n", begin_size, end_size); cli_print(buf); */ // uint8_t rx_data[64]; // uint8_t fifo_length = end_size - begin_size; /* if(fifo_length < 64) { // cc1101->SpiReadBurstReg(CC1101_RXFIFO, rx_data, fifo_length); * printf("FIFO:"); for(uint8_t i = 0; i < fifo_length; i++) { for(uint8_t bit = 0; bit < 8; bit++) { printf("%s", (rx_data[i] & (1 << bit)) > 0 ? "1" : "0"); } printf(" "); } printf("\n"); * for(uint8_t i = 0; i < fifo_length; i++) { for(uint8_t bit = 0; bit < 8; bit++) { gpio_write((GpioPin*)&debug_0, (rx_data[i] & (1 << bit)) > 0); delay_us(5); } } } else { cli_print("fifo size over\n"); } */ return rssi_dBm; } void flp_config(CC1101* cc1101) { // cc1101->SpiWriteReg(CC1101_FSCTRL1, 0x06); //IF frequency // cc1101->SpiWriteReg(CC1101_FSCTRL0, 0x00); //frequency offset before synthesizer // cc1101->SpiWriteReg(CC1101_MDMCFG4, 0xCC); // RX filter bandwidth 100k(0xcc) // cc1101->SpiWriteReg(CC1101_MDMCFG3, 0x43); //datarate config 512kBaud for the purpose of fast rssi measurement // cc1101->SpiWriteReg(CC1101_MDMCFG1, 0x21); //FEC preamble etc. last 2 bits for channel spacing // cc1101->SpiWriteReg(CC1101_MDMCFG0, 0xF8); //100khz channel spacing // CC1101_CHANNR moved to SetChannel func cc1101->SpiWriteReg( CC1101_MCSM0, 0x18); // calibrate when going from IDLE to RX or TX ; 149 - 155 μs timeout // MCSM0.FS_AUTOCAL[1:0] = 1 // cc1101->SpiSetRegValue(CC1101_MCSM0, 1, 5, 4); // this not work // cc1101->SpiWriteReg(CC1101_FOCCFG, 0x16); //frequency compensation cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43); cc1101->SpiWriteReg(CC1101_AGCCTRL1, 0x49); cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91); //freq synthesizer calibration cc1101->SpiWriteReg(CC1101_FSCAL3, 0xEA); cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); cc1101->SpiWriteReg(CC1101_FSCAL1, 0x00); cc1101->SpiWriteReg(CC1101_FSCAL0, 0x1F); // cc1101->SpiWriteReg(CC1101_TEST2, 0x81); // cc1101->SpiWriteReg(CC1101_TEST1, 0x35); // cc1101->SpiWriteReg(CC1101_TEST0, 0x0B); //should be 0x0B for lower than 430.6MHz and 0x09 for higher // cc1101->SpiWriteReg(CC1101_IOCFG2, 0x0D); //data output pin for asynchronous mode // cc1101->SpiWriteReg(CC1101_IOCFG0, 0x2E); //High impedance (3-state), GDO0 configed as data input for asynchronous mode // cc1101->SpiWriteReg(CC1101_PKTCTRL0, 0x33); //whitening off; asynchronous serial mode; CRC diable;reserved // cc1101->SpiWriteReg(CC1101_FIFOTHR, 0x47); //Adc_retention enabled for RX filter bandwidth less than 325KHz; defalut fifo threthold. // === Transparent mode === // async data out cc1101->SpiSetRegValue(CC1101_IOCFG0, 13, 5, 0); // FIFOTHR.ADC_RETENTION = 1 cc1101->SpiSetRegValue(CC1101_FIFOTHR, 1, 6, 6); // PKTCTRL1.APPEND_STATUS = 0 cc1101->SpiSetRegValue(CC1101_PKTCTRL1, 0, 2, 2); // PKTCTRL0.WHITE_DATA = 0 cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 0, 6, 6); // PKTCTRL0.LENGTH_CONFIG = 2 // Infinite packet length mode cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 2, 1, 0); // PKTCTRL0.CRC_EN = 0 cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 0, 2, 2); // PKTCTRL0.PKT_FORMAT = 3 cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 3, 5, 4); // bandwidth 50-100 kHz if(!cc1101->setRxBandwidth(75.0)) { printf("wrong rx bw\n"); } // datarate ~30 kbps if(!cc1101->setBitRate(100.)) { printf("wrong bitrate\n"); } cc1101->SetReceive(); // mod // MDMCFG2.MOD_FORMAT = 3 (3: OOK, 0: 2-FSK) cc1101->SpiSetRegValue(CC1101_MDMCFG2, 3, 6, 4); // MDMCFG2.SYNC_MODE = 0 cc1101->SpiSetRegValue(CC1101_MDMCFG2, 0, 2, 0); } void async_config(CC1101* cc1101) { cc1101->SpiSetRegValue(CC1101_IOCFG0, 13, 5, 0); // GDO0 Output Pin Configuration // FIFOTHR.ADC_RETENTION = 1 cc1101->SpiSetRegValue(CC1101_FIFOTHR, 1, 6, 6); // PKTCTRL1.APPEND_STATUS = 0 cc1101->SpiSetRegValue(CC1101_PKTCTRL1, 0, 2, 2); cc1101->SpiWriteReg(CC1101_PKTCTRL0, 0x32); // Packet Automation Control /* FIXME: this sequence not work // PKTCTRL0.PKT_FORMAT = 3 cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 3, 5, 4); // PKTCTRL0.LENGTH_CONFIG = 2 // Infinite packet length mode cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 2, 1, 0); // PKTCTRL0.CRC_EN = 0 cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 0, 2, 2); // PKTCTRL0.WHITE_DATA = 0 cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 0, 6, 6); */ cc1101->SpiWriteReg(CC1101_MDMCFG4, 0xD6); //Modem Configuration cc1101->SpiWriteReg(CC1101_MDMCFG3, 0xE4); //Modem Configuration /* FIXME: not work // bandwidth 50-100 kHz if(!cc1101->setRxBandwidth(75.0)) { printf("wrong rx bw\n"); } // datarate ~30 kbps if(!cc1101->setBitRate(100.)) { printf("wrong bitrate\n"); } */ cc1101->SpiWriteReg(CC1101_MDMCFG2, 0x30); //Modem Configuration /* FIXME: not work // MDMCFG2.MOD_FORMAT = 3 (3: OOK, 0: 2-FSK) cc1101->SpiSetRegValue(CC1101_MDMCFG2, 3, 6, 4); // MDMCFG2.SYNC_MODE = 0 cc1101->SpiSetRegValue(CC1101_MDMCFG2, 0, 2, 0); */ cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //Main Radio Control State Machine Configuration cc1101->SpiWriteReg(CC1101_FSCAL3, 0xE9); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_FSCAL1, 0x00); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_FSCAL0, 0x1F); //Frequency Synthesizer Calibration } void tx_config(CC1101* cc1101) { // cc1101->SpiWriteReg(CC1101_IOCFG2,0x0B); //GDO2 Output Pin Configuration // cc1101->SpiWriteReg(CC1101_IOCFG0,0x0C); //GDO0 Output Pin Configuration cc1101->SpiSetRegValue(CC1101_IOCFG0, 13, 5, 0); // GDO0 Output Pin Configuration cc1101->SpiWriteReg(CC1101_FIFOTHR, 0x47); //RX FIFO and TX FIFO Thresholds cc1101->SpiWriteReg(CC1101_PKTCTRL0, 0x32); //Packet Automation Control cc1101->SpiWriteReg(CC1101_FSCTRL1, 0x06); //Frequency Synthesizer Control cc1101->SpiWriteReg(CC1101_FREQ2, 0x10); //Frequency Control Word, High Byte cc1101->SpiWriteReg(CC1101_FREQ1, 0xB0); //Frequency Control Word, Middle Byte cc1101->SpiWriteReg(CC1101_FREQ0, 0x71); //Frequency Control Word, Low Byte cc1101->SpiWriteReg(CC1101_MDMCFG4, 0x6A); //Modem Configuration cc1101->SpiWriteReg(CC1101_MDMCFG3, 0x2E); //Modem Configuration cc1101->SpiWriteReg(CC1101_MDMCFG2, 0x30); //Modem Configuration cc1101->SpiWriteReg(CC1101_DEVIATN, 0x15); //Modem Deviation Setting cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //Main Radio Control State Machine Configuration cc1101->SpiWriteReg(CC1101_FOCCFG, 0x16); //Frequency Offset Compensation Configuration cc1101->SpiWriteReg(CC1101_WORCTRL, 0xFB); //Wake On Radio Control cc1101->SpiWriteReg(CC1101_FREND0, 0x11); //Front End TX Configuration cc1101->SpiWriteReg(CC1101_FSCAL3, 0xE9); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_FSCAL1, 0x00); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_FSCAL0, 0x1F); //Frequency Synthesizer Calibration cc1101->SpiWriteReg(CC1101_TEST2, 0x81); //Various Test Settings cc1101->SpiWriteReg(CC1101_TEST1, 0x35); //Various Test Settings cc1101->SpiWriteReg(CC1101_TEST0, 0x09); //Various Test Settings } // f = (f_osc/65536) * (FREQ + CHAN * (256 + CH_SP_M) * 2^(CH_SP_E - 2)) // FREQ = f / (f_osc/65536) // CHAN = 0 // TODO: CHAN number not implemented! // TODO: reg values not affetcts const Band bands[] = { {300., {0x00, 0x00, 0x00}, 0, 255, 74}, {315., {0x00, 0x00, 0x00}, 0, 255, 74}, {348., {0x00, 0x00, 0x00}, 0, 255, 74}, {387., {0x00, 0x00, 0x00}, 0, 255, 74}, {433.92, {0x00, 0x00, 0x00}, 0, 255, 74}, {438.9, {0x00, 0x00, 0x00}, 0, 255, 74}, {464., {0x00, 0x00, 0x00}, 0, 255, 74}, {779., {0x00, 0x00, 0x00}, 0, 255, 74}, {868., {0x00, 0x00, 0x00}, 0, 255, 74}, {915., {0x00, 0x00, 0x00}, 0, 255, 74}, {928., {0x00, 0x00, 0x00}, 0, 255, 74}, }; const FreqConfig FREQ_LIST[] = { {&bands[0], 0}, {&bands[1], 0}, {&bands[2], 0}, {&bands[3], 0}, {&bands[4], 0}, {&bands[5], 0}, {&bands[6], 0}, {&bands[7], 0}, {&bands[8], 0}, {&bands[9], 0}, {&bands[10], 0}, }; extern "C" void cc1101_isr() { gpio_write((GpioPin*)&debug_0, gpio_read(&cc1101_g0_gpio)); } typedef enum { EventTypeTick, EventTypeKey, } EventType; typedef struct { union { InputEvent input; } value; EventType type; } AppEvent; typedef enum { ModeRx, ModeTx } Mode; typedef struct { int16_t dbm; uint8_t reg; } TxLevel; const TxLevel TX_LEVELS[] = { {-10, 0}, {-5, 0}, {0, 0}, {5, 0}, }; typedef struct { Mode mode; size_t active_freq; int16_t last_rssi; size_t tx_level; bool need_cc1101_conf; } State; static void render_callback(Canvas* canvas, void* ctx) { State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25); if(!state) return; canvas_clear(canvas); canvas_set_color(canvas, ColorBlack); canvas_set_font(canvas, FontPrimary); canvas_draw_str(canvas, 2, 12, "cc1101 workaround"); { char buf[24]; FreqConfig conf = FREQ_LIST[state->active_freq]; float freq = conf.band->base_freq + CHAN_SPA * conf.channel; sprintf(buf, "freq: %ld.%02ld MHz", (uint32_t)freq, (uint32_t)(freq * 100.) % 100); canvas_set_font(canvas, FontSecondary); canvas_draw_str(canvas, 2, 25, buf); } { canvas_set_font(canvas, FontSecondary); if(state->need_cc1101_conf) { canvas_draw_str(canvas, 2, 36, "mode: configuring..."); } else if(state->mode == ModeRx) { canvas_draw_str(canvas, 2, 36, "mode: RX"); } else if(state->mode == ModeTx) { canvas_draw_str(canvas, 2, 36, "mode: TX"); } else { canvas_draw_str(canvas, 2, 36, "mode: unknown"); } } { if(!state->need_cc1101_conf && state->mode == ModeRx) { char buf[24]; sprintf(buf, "RSSI: %d dBm", state->last_rssi); canvas_set_font(canvas, FontSecondary); canvas_draw_str(canvas, 2, 48, buf); } } { char buf[24]; sprintf(buf, "tx level: %d dBm", TX_LEVELS[state->tx_level].dbm); canvas_set_font(canvas, FontSecondary); canvas_draw_str(canvas, 2, 63, buf); } release_mutex((ValueMutex*)ctx, state); } static void input_callback(InputEvent* input_event, void* ctx) { osMessageQueueId_t event_queue = (QueueHandle_t)ctx; AppEvent event; event.type = EventTypeKey; event.value.input = *input_event; osMessageQueuePut(event_queue, &event, 0, 0); } extern "C" void cc1101_workaround(void* p) { osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL); furi_check(event_queue); State _state; _state.mode = ModeRx; _state.active_freq = 4; _state.need_cc1101_conf = true; _state.last_rssi = 0; _state.tx_level = 0; ValueMutex state_mutex; if(!init_mutex(&state_mutex, &_state, sizeof(State))) { printf("[cc1101] cannot create mutex\n"); furiac_exit(NULL); } Widget* widget = widget_alloc(); widget_draw_callback_set(widget, render_callback, &state_mutex); widget_input_callback_set(widget, input_callback, event_queue); // Open GUI and register widget Gui* gui = (Gui*)furi_open("gui"); if(gui == NULL) { printf("[cc1101] gui is not available\n"); furiac_exit(NULL); } gui_add_widget(gui, widget, GuiLayerFullscreen); gpio_init(&debug_0, GpioModeOutputPushPull); gpio_write((GpioPin*)&debug_0, false); printf("[cc1101] creating device\n"); GpioPin cs_pin = {CC1101_CS_GPIO_Port, CC1101_CS_Pin}; gpio_init(&cc1101_g0_gpio, GpioModeInput); // TODO open record GpioPin* cs_pin_record = &cs_pin; CC1101 cc1101(cs_pin_record); printf("[cc1101] init device\n"); uint8_t address = cc1101.Init(); if(address > 0) { printf("[cc1101] init done: %d\n", address); } else { printf("[cc1101] init fail\n"); furiac_exit(NULL); } cc1101.SpiStrobe(CC1101_SIDLE); // flp_config(&cc1101); // async_config(&cc1101); tx_config(&cc1101); // setup_freq(&cc1101, &FREQ_LIST[4]); // enable_cc1101_irq(); printf("init ok\n"); // TODO open record GpioPin* led_record = (GpioPin*)&led_gpio[1]; // configure pin gpio_init(led_record, GpioModeOutputOpenDrain); const int16_t RSSI_THRESHOLD = -60; // setup_freq(&cc1101, &FREQ_LIST[1]); cc1101.SetReceive(); AppEvent event; while(1) { osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 100); State* state = (State*)acquire_mutex_block(&state_mutex); if(event_status == osOK) { if(event.type == EventTypeKey) { if(event.value.input.state && event.value.input.input == InputBack) { printf("[cc1101] bye!\n"); // TODO remove all widgets create by app widget_enabled_set(widget, false); furiac_exit(NULL); } if(event.value.input.state && event.value.input.input == InputUp) { if(state->active_freq > 0) { state->active_freq--; state->need_cc1101_conf = true; } } if(event.value.input.state && event.value.input.input == InputDown) { if(state->active_freq < (sizeof(FREQ_LIST) / sizeof(FREQ_LIST[0]) - 1)) { state->active_freq++; state->need_cc1101_conf = true; } } if(event.value.input.state && event.value.input.input == InputLeft) { if(state->tx_level < (sizeof(TX_LEVELS) / sizeof(TX_LEVELS[0]) - 1)) { state->tx_level++; } else { state->tx_level = 0; } state->need_cc1101_conf = true; } if(event.value.input.input == InputOk) { state->mode = event.value.input.state ? ModeTx : ModeRx; state->need_cc1101_conf = true; } } } else { } if(state->need_cc1101_conf) { if(state->mode == ModeRx) { cc1101.SpiStrobe(CC1101_SIDLE); gpio_init(&cc1101_g0_gpio, GpioModeInput); setup_freq(&cc1101, &FREQ_LIST[state->active_freq]); cc1101.SetReceive(); state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]); } else if(state->mode == ModeTx) { cc1101.SpiStrobe(CC1101_SIDLE); setup_freq(&cc1101, &FREQ_LIST[state->active_freq]); cc1101.SetTransmit(); gpio_init(&cc1101_g0_gpio, GpioModeOutputPushPull); gpio_write(&cc1101_g0_gpio, false); } state->need_cc1101_conf = false; } if(!state->need_cc1101_conf && state->mode == ModeRx) { state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]); gpio_write(led_record, state->last_rssi < RSSI_THRESHOLD); } else if(!state->need_cc1101_conf && state->mode == ModeTx) { /* const uint8_t data = 0xA5; for(uint8_t i = 0; i < 8; i++) { gpio_write(&cc1101_g0_gpio, (data & (1 << i)) > 0); osDelay(1); } gpio_write(&cc1101_g0_gpio, false); */ /* // BELL UDB-Q022-0000 const uint16_t HALF_PERIOD = 500; for(uint8_t n = 0; n < 4; n++) { for(uint8_t i = 0; i < 4; i++) { gpio_write(&cc1101_g0_gpio, true); delay_us(3 * HALF_PERIOD); gpio_write(&cc1101_g0_gpio, false); delay_us(HALF_PERIOD); } for(uint8_t i = 0; i < 40; i++) { gpio_write(&cc1101_g0_gpio, true); delay_us(HALF_PERIOD); gpio_write(&cc1101_g0_gpio, false); delay_us(HALF_PERIOD); } } */ // BELL ERA C61, static code const uint16_t ONE_ON = 150; const uint16_t ONE_OFF = 400; const uint16_t ZERO_ON = 420; const uint16_t ZERO_OFF = 130; const bool SEQ[] = {true, true, false, false, true, false, true, false, true, false, true, true, true, false, true, false, true, true, true, true, true, false, true, false, true}; for(uint8_t n = 0; n < 10; n++) { for(uint8_t i = 0; i < sizeof(SEQ) / sizeof(SEQ[0]); i++) { if(SEQ[i]) { gpio_write(&cc1101_g0_gpio, false); delay_us(ONE_ON); gpio_write(&cc1101_g0_gpio, true); delay_us(ONE_OFF); } else { gpio_write(&cc1101_g0_gpio, false); delay_us(ZERO_ON); gpio_write(&cc1101_g0_gpio, true); delay_us(ZERO_OFF); } } osDelay(4); } gpio_write(&cc1101_g0_gpio, false); } release_mutex(&state_mutex, state); widget_update(widget); } }