#include "flipper.h" #include "cc1101-workaround/cc1101.h" #define RSSI_DELAY 5000 //rssi delay in micro second #define NUM_OF_SUB_BANDS 7 #define CHAN_SPA 0.05 // channel spacing int16_t rssi_to_dbm(uint8_t rssi_dec, uint8_t rssiOffset) { int16_t rssi; if(rssi_dec >= 128) { rssi = (int16_t)((int16_t)(rssi_dec - 256) / 2) - rssiOffset; } else { rssi = (rssi_dec / 2) - rssiOffset; } return rssi; } typedef struct { float base_freq; uint8_t reg[3]; // FREQ2, FREQ1, FREQ0 uint8_t first_channel; uint8_t last_channel; uint8_t rssi_offset; } Band; typedef struct { const Band* band; uint16_t channel; } FreqConfig; void setup_freq(CC1101* cc1101, const FreqConfig* config) { // cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off cc1101->SetFreq(config->band->reg[0], config->band->reg[1], config->band->reg[2]); cc1101->SetChannel(config->channel); /* //set test0 to 0x09 cc1101->SpiWriteReg(CC1101_TEST0, 0x09); //set FSCAL2 to 0x2A to force VCO HIGH cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); // perform a manual calibration by issuing SCAL command cc1101->SpiStrobe(CC1101_SCAL); */ } int16_t rx_rssi(CC1101* cc1101, const FreqConfig* config) { cc1101->SetReceive(); delayMicroseconds(RSSI_DELAY); // 1.4.8) read PKTSTATUS register while the radio is in RX state /*uint8_t _pkt_status = */ cc1101->SpiReadStatus(CC1101_PKTSTATUS); // 1.4.9) enter IDLE state by issuing a SIDLE command cc1101->SpiStrobe(CC1101_SIDLE); // //read rssi value and converto to dBm form uint8_t rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI); int16_t rssi_dBm = rssi_to_dbm(rssi_dec, config->band->rssi_offset); return rssi_dBm; } void tx(CC1101* cc1101, const FreqConfig* config) { /* cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //enable FS_AUTOCAL cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43); //back to recommended config cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91); //back to recommended config */ cc1101->SetFreq(config->band->reg[0], config->band->reg[1], config->band->reg[2]); cc1101->SetChannel(config->channel); cc1101->SetTransmit(); } void idle(CC1101* cc1101) { cc1101->SpiStrobe(CC1101_SIDLE); } const Band bands[NUM_OF_SUB_BANDS] = { {387, {0x0E, 0xE2, 0x76}, 0, 255, 74}, {399.8, {0x0F, 0x60, 0x76}, 0, 255, 74}, {412.6, {0x0F, 0xDE, 0x76}, 0, 255, 74}, {425.4, {0x10, 0x5C, 0x76}, 160, 180, 74}, {438.2, {0x10, 0xDA, 0x76}, 0, 255, 74}, {451, {0x11, 0x58, 0x8F}, 0, 255, 74}, {463.8, {0x11, 0xD6, 0x8F}, 0, 4, 74}, }; const FreqConfig FREQ_LIST[] = { {&bands[0], 0}, {&bands[0], 50}, {&bands[0], 100}, {&bands[0], 150}, {&bands[0], 200}, {&bands[1], 0}, {&bands[1], 50}, {&bands[1], 100}, {&bands[1], 150}, {&bands[1], 200}, {&bands[2], 0}, {&bands[2], 50}, {&bands[2], 100}, {&bands[2], 150}, {&bands[2], 200}, {&bands[3], 160}, {&bands[3], 170}, {&bands[4], 0}, {&bands[4], 50}, {&bands[4], 100}, {&bands[4], 150}, {&bands[4], 200}, {&bands[5], 0}, {&bands[5], 50}, {&bands[5], 100}, {&bands[5], 150}, {&bands[5], 200}, {&bands[6], 0}, }; typedef enum { EventTypeTick, EventTypeKey, } EventType; typedef struct { union { InputEvent input; } value; EventType type; } AppEvent; typedef enum { ModeRx, ModeTx } Mode; typedef struct { int16_t dbm; uint8_t reg; } TxLevel; const TxLevel TX_LEVELS[] = { {-10, 0}, {-5, 0}, {0, 0}, {5, 0}, }; typedef struct { Mode mode; size_t active_freq; int16_t last_rssi; size_t tx_level; bool need_cc1101_conf; } State; static void render_callback(CanvasApi* canvas, void* ctx) { State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25); canvas->clear(canvas); canvas->set_color(canvas, ColorBlack); canvas->set_font(canvas, FontPrimary); canvas->draw_str(canvas, 2, 12, "cc1101 workaround"); { char buf[24]; FreqConfig conf = FREQ_LIST[state->active_freq]; float freq = conf.band->base_freq + CHAN_SPA * conf.channel; sprintf(buf, "freq: %ld.%02ld MHz", (uint32_t)freq, (uint32_t)(freq * 100.) % 100); canvas->set_font(canvas, FontSecondary); canvas->draw_str(canvas, 2, 25, buf); } { canvas->set_font(canvas, FontSecondary); if(state->need_cc1101_conf) { canvas->draw_str(canvas, 2, 36, "mode: configuring..."); } else if(state->mode == ModeRx) { canvas->draw_str(canvas, 2, 36, "mode: RX"); } else if(state->mode == ModeTx) { canvas->draw_str(canvas, 2, 36, "mode: TX"); } else { canvas->draw_str(canvas, 2, 36, "mode: unknown"); } } { if(!state->need_cc1101_conf && state->mode == ModeRx) { char buf[24]; sprintf(buf, "RSSI: %d dBm", state->last_rssi); canvas->set_font(canvas, FontSecondary); canvas->draw_str(canvas, 2, 48, buf); } } { char buf[24]; sprintf(buf, "tx level: %d dBm", TX_LEVELS[state->tx_level].dbm); canvas->set_font(canvas, FontSecondary); canvas->draw_str(canvas, 2, 63, buf); } release_mutex((ValueMutex*)ctx, state); } static void input_callback(InputEvent* input_event, void* ctx) { osMessageQueueId_t event_queue = (QueueHandle_t)ctx; AppEvent event; event.type = EventTypeKey; event.value.input = *input_event; osMessageQueuePut(event_queue, &event, 0, 0); } extern "C" void cc1101_workaround(void* p) { osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL); assert(event_queue); State _state; _state.mode = ModeRx; _state.active_freq = 0; _state.need_cc1101_conf = true; _state.last_rssi = 0; _state.tx_level = 0; ValueMutex state_mutex; if(!init_mutex(&state_mutex, &_state, sizeof(State))) { printf("[cc1101] cannot create mutex\n"); furiac_exit(NULL); } Widget* widget = widget_alloc(); widget_draw_callback_set(widget, render_callback, &state_mutex); widget_input_callback_set(widget, input_callback, event_queue); // Open GUI and register widget GuiApi* gui = (GuiApi*)furi_open("gui"); if(gui == NULL) { printf("[cc1101] gui is not available\n"); furiac_exit(NULL); } gui->add_widget(gui, widget, GuiLayerFullscreen); printf("[cc1101] creating device\n"); GpioPin cs_pin = {CC1101_CS_GPIO_Port, CC1101_CS_Pin}; // TODO open record GpioPin* cs_pin_record = &cs_pin; CC1101 cc1101(cs_pin_record); printf("[cc1101] init device\n"); uint8_t address = cc1101.Init(); if(address > 0) { printf("[cc1101] init done: %d\n", address); } else { printf("[cc1101] init fail\n"); furiac_exit(NULL); } // RX filter bandwidth 58.035714(0xFD) 100k(0xCD) 200k(0x8D) cc1101.SpiWriteReg(CC1101_MDMCFG4, 0xCD); // datarate config 250kBaud for the purpose of fast rssi measurement cc1101.SpiWriteReg(CC1101_MDMCFG3, 0x3B); // FEC preamble etc. last 2 bits for channel spacing cc1101.SpiWriteReg(CC1101_MDMCFG1, 0x20); // 50khz channel spacing cc1101.SpiWriteReg(CC1101_MDMCFG0, 0xF8); // create pin GpioPin led = {GPIOA, GPIO_PIN_8}; // TODO open record GpioPin* led_record = &led; // configure pin pinMode(led_record, GpioModeOutputOpenDrain); const int16_t RSSI_THRESHOLD = -89; AppEvent event; while(1) { osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 150); State* state = (State*)acquire_mutex_block(&state_mutex); if(event_status == osOK) { if(event.type == EventTypeKey) { if(event.value.input.state && event.value.input.input == InputBack) { printf("[cc1101] bye!\n"); // TODO remove all widgets create by app widget_enabled_set(widget, false); furiac_exit(NULL); } if(event.value.input.state && event.value.input.input == InputUp) { if(state->active_freq > 0) { state->active_freq--; state->need_cc1101_conf = true; } } if(event.value.input.state && event.value.input.input == InputDown) { if(state->active_freq < (sizeof(FREQ_LIST) / sizeof(FREQ_LIST[0]) - 1)) { state->active_freq++; state->need_cc1101_conf = true; } } if(event.value.input.state && event.value.input.input == InputLeft) { if(state->tx_level < (sizeof(TX_LEVELS) / sizeof(TX_LEVELS[0]) - 1)) { state->tx_level++; } else { state->tx_level = 0; } state->need_cc1101_conf = true; } if(event.value.input.input == InputOk) { state->mode = event.value.input.state ? ModeTx : ModeRx; state->need_cc1101_conf = true; } } } else { if(!state->need_cc1101_conf && state->mode == ModeRx) { state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]); } } if(state->need_cc1101_conf) { if(state->mode == ModeRx) { setup_freq(&cc1101, &FREQ_LIST[state->active_freq]); state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]); // idle(&cc1101); } else if(state->mode == ModeTx) { tx(&cc1101, &FREQ_LIST[state->active_freq]); } state->need_cc1101_conf = false; } digitalWrite( led_record, (state->last_rssi > RSSI_THRESHOLD && !state->need_cc1101_conf) ? LOW : HIGH); release_mutex(&state_mutex, state); widget_update(widget); } /* while(1) { for(uint8_t i = 0; i <= NUM_OF_SUB_BANDS; i++) { highRSSI[i] = MIN_DBM; } activeChannel = 300; tx(&cc1101, activeBand, activeChannel, 500); scanFreq(&cc1101); if(activeChannel < 256 && highRSSI[activeBand] > RSSI_THRESHOLD) { float freq = base_freq[activeBand] + CHAN_SPA * activeChannel; printf( "channel: %d, freq: %d, RSSI: %d\n", activeChannel, (uint32_t)(freq * 1000), highRSSI[activeBand] ); * if(tx_on) { tx(&cc1101, activeBand, activeChannel, 500); } else { osDelay(1000); } * } else { // printf("0 carrier sensed\n"); } * uint8_t band = 4; // 438.2 MHz * cc1101.SetFreq(freqSettings[band][0], freqSettings[band][1], freqSettings[band][2]); cc1101.SetChannel(0); cc1101.SetTransmit(); delay(5000); cc1101.SpiStrobe(CC1101_SIDLE); * delay(1000); } */ }