#include #include #include #include #include #include #include #define TAG "FuriHalOs" #define FURI_HAL_IDLE_TIMER_CLK_HZ 32768 #define FURI_HAL_OS_TICK_HZ configTICK_RATE_HZ #define FURI_HAL_OS_IDLE_CNT_TO_TICKS(x) ((x * FURI_HAL_OS_TICK_HZ) / FURI_HAL_IDLE_TIMER_CLK_HZ) #define FURI_HAL_OS_TICKS_TO_IDLE_CNT(x) ((x * FURI_HAL_IDLE_TIMER_CLK_HZ) / FURI_HAL_OS_TICK_HZ) #define FURI_HAL_IDLE_TIMER_TICK_PER_EPOCH (FURI_HAL_OS_IDLE_CNT_TO_TICKS(FURI_HAL_IDLE_TIMER_MAX)) #define FURI_HAL_OS_MAX_SLEEP (FURI_HAL_IDLE_TIMER_TICK_PER_EPOCH - 1) #ifdef FURI_HAL_OS_DEBUG #include #define LED_SLEEP_PORT GPIOA #define LED_SLEEP_PIN LL_GPIO_PIN_7 #define LED_TICK_PORT GPIOA #define LED_TICK_PIN LL_GPIO_PIN_6 #define LED_SECOND_PORT GPIOA #define LED_SECOND_PIN LL_GPIO_PIN_4 void furi_hal_os_timer_callback() { LL_GPIO_TogglePin(LED_SECOND_PORT, LED_SECOND_PIN); } #endif extern void xPortSysTickHandler(); static volatile uint32_t furi_hal_os_skew = 0; void furi_hal_os_init() { furi_hal_idle_timer_init(); #ifdef FURI_HAL_OS_DEBUG LL_GPIO_SetPinMode(LED_SLEEP_PORT, LED_SLEEP_PIN, LL_GPIO_MODE_OUTPUT); LL_GPIO_SetPinMode(LED_TICK_PORT, LED_TICK_PIN, LL_GPIO_MODE_OUTPUT); LL_GPIO_SetPinMode(LED_SECOND_PORT, LED_SECOND_PIN, LL_GPIO_MODE_OUTPUT); osTimerId_t second_timer = osTimerNew(furi_hal_os_timer_callback, osTimerPeriodic, NULL, NULL); osTimerStart(second_timer, FURI_HAL_OS_TICK_HZ); #endif FURI_LOG_I(TAG, "Init OK"); } void furi_hal_os_tick() { if(xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { #ifdef FURI_HAL_OS_DEBUG LL_GPIO_TogglePin(LED_TICK_PORT, LED_TICK_PIN); #endif xPortSysTickHandler(); } } static inline uint32_t furi_hal_os_sleep(TickType_t expected_idle_ticks) { // Stop ticks furi_hal_clock_suspend_tick(); // Start wakeup timer furi_hal_idle_timer_start(FURI_HAL_OS_TICKS_TO_IDLE_CNT(expected_idle_ticks)); #ifdef FURI_HAL_OS_DEBUG LL_GPIO_ResetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN); #endif // Go to sleep mode furi_hal_power_sleep(); #ifdef FURI_HAL_OS_DEBUG LL_GPIO_SetOutputPin(LED_SLEEP_PORT, LED_SLEEP_PIN); #endif // Calculate how much time we spent in the sleep uint32_t after_cnt = furi_hal_idle_timer_get_cnt() + furi_hal_os_skew; uint32_t after_tick = FURI_HAL_OS_IDLE_CNT_TO_TICKS(after_cnt); furi_hal_os_skew = after_cnt - (after_cnt / after_tick); bool cmpm = LL_LPTIM_IsActiveFlag_CMPM(FURI_HAL_IDLE_TIMER); bool arrm = LL_LPTIM_IsActiveFlag_ARRM(FURI_HAL_IDLE_TIMER); if(cmpm && arrm) after_tick += expected_idle_ticks; // Prepare tick timer for new round furi_hal_idle_timer_reset(); // Resume ticks furi_hal_clock_resume_tick(); return after_tick; } void vPortSuppressTicksAndSleep(TickType_t expected_idle_ticks) { if(!furi_hal_power_sleep_available()) { __WFI(); return; } // Limit amount of ticks to maximum that timer can count if(expected_idle_ticks > FURI_HAL_OS_MAX_SLEEP) { expected_idle_ticks = FURI_HAL_OS_MAX_SLEEP; } // Stop IRQ handling, no one should disturb us till we finish __disable_irq(); // Confirm OS that sleep is still possible if(eTaskConfirmSleepModeStatus() == eAbortSleep) { __enable_irq(); return; } // Sleep and track how much ticks we spent sleeping uint32_t completed_ticks = furi_hal_os_sleep(expected_idle_ticks); // Notify system about time spent in sleep if(completed_ticks > 0) { vTaskStepTick(MIN(completed_ticks, expected_idle_ticks)); } // Reenable IRQ __enable_irq(); } void vApplicationStackOverflowHook(TaskHandle_t xTask, char* pcTaskName) { furi_crash("StackOverflow"); }