#include "rfid_timer_emulator.h" extern TIM_HandleTypeDef htim1; RfidTimerEmulator::RfidTimerEmulator() { } RfidTimerEmulator::~RfidTimerEmulator() { std::map::iterator it; for(it = encoders.begin(); it != encoders.end(); ++it) { delete it->second; } encoders.clear(); } void RfidTimerEmulator::start(LfrfidKeyType type, const uint8_t* data, uint8_t data_size) { if(encoders.count(type)) { current_encoder = encoders.find(type)->second; if(data_size >= lfrfid_key_get_type_data_count(type)) { current_encoder->init(data, data_size); furi_hal_rfid_tim_emulate(125000); furi_hal_rfid_pins_emulate(); api_interrupt_add(timer_update_callback, InterruptTypeTimerUpdate, this); furi_hal_rfid_tim_emulate_start(); } } else { // not found } } void RfidTimerEmulator::stop() { furi_hal_rfid_tim_emulate_stop(); api_interrupt_remove(timer_update_callback, InterruptTypeTimerUpdate); furi_hal_rfid_tim_reset(); furi_hal_rfid_pins_reset(); } void RfidTimerEmulator::timer_update_callback(void* _hw, void* ctx) { RfidTimerEmulator* _this = static_cast(ctx); TIM_HandleTypeDef* hw = static_cast(_hw); if(furi_hal_rfid_is_tim_emulate(hw)) { bool result; bool polarity; uint16_t period; uint16_t pulse; do { _this->current_encoder->get_next(&polarity, &period, &pulse); result = _this->pulse_joiner.push_pulse(polarity, period, pulse); } while(result == false); _this->pulse_joiner.pop_pulse(&period, &pulse); furi_hal_rfid_set_emulate_period(period - 1); furi_hal_rfid_set_emulate_pulse(pulse); } }