#include "infactory.h" #define TAG "WSProtocolInfactory" /* * Help * https://github.com/merbanan/rtl_433/blob/master/src/devices/infactory.c * * Analysis using Genuino (see http://gitlab.com/hp-uno, e.g. uno_log_433): * Observed On-Off-Key (OOK) data pattern: * preamble syncPrefix data...(40 bit) syncPostfix * HHLL HHLL HHLL HHLL HLLLLLLLLLLLLLLLL (HLLLL HLLLLLLLL HLLLL HLLLLLLLL ....) HLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL * Breakdown: * - four preamble pairs '1'/'0' each with a length of ca. 1000us * - syncPre, syncPost, data0, data1 have a '1' start pulse of ca. 500us * - syncPre pulse before dataPtr has a '0' pulse length of ca. 8000us * - data0 (0-bits) have then a '0' pulse length of ca. 2000us * - data1 (1-bits) have then a '0' pulse length of ca. 4000us * - syncPost after dataPtr has a '0' pulse length of ca. 16000us * This analysis is the reason for the new r_device definitions below. * NB: pulse_slicer_ppm does not use .gap_limit if .tolerance is set. * * Outdoor sensor, transmits temperature and humidity data * - inFactory NC-3982-913/NX-5817-902, Pearl (for FWS-686 station) * - nor-tec 73383 (weather station + sensor), Schou Company AS, Denmark * - DAY 73365 (weather station + sensor), Schou Company AS, Denmark * Known brand names: inFactory, nor-tec, GreenBlue, DAY. Manufacturer in China. * Transmissions includes an id. Every 60 seconds the sensor transmits 6 packets: * 0000 1111 | 0011 0000 | 0101 1100 | 1110 0111 | 0110 0001 * iiii iiii | cccc ub?? | tttt tttt | tttt hhhh | hhhh ??nn * - i: identification; changes on battery switch * - c: CRC-4; CCITT checksum, see below for computation specifics * - u: unknown; (sometimes set at power-on, but not always) * - b: battery low; flag to indicate low battery voltage * - h: Humidity; BCD-encoded, each nibble is one digit, 'A0' means 100%rH * - t: Temperature; in °F as binary number with one decimal place + 90 °F offset * - n: Channel; Channel number 1 - 3 * */ static const SubGhzBlockConst ws_protocol_infactory_const = { .te_short = 500, .te_long = 2000, .te_delta = 150, .min_count_bit_for_found = 40, }; struct WSProtocolDecoderInfactory { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; WSBlockGeneric generic; uint16_t header_count; }; struct WSProtocolEncoderInfactory { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; WSBlockGeneric generic; }; typedef enum { InfactoryDecoderStepReset = 0, InfactoryDecoderStepCheckPreambule, InfactoryDecoderStepSaveDuration, InfactoryDecoderStepCheckDuration, } InfactoryDecoderStep; const SubGhzProtocolDecoder ws_protocol_infactory_decoder = { .alloc = ws_protocol_decoder_infactory_alloc, .free = ws_protocol_decoder_infactory_free, .feed = ws_protocol_decoder_infactory_feed, .reset = ws_protocol_decoder_infactory_reset, .get_hash_data = ws_protocol_decoder_infactory_get_hash_data, .serialize = ws_protocol_decoder_infactory_serialize, .deserialize = ws_protocol_decoder_infactory_deserialize, .get_string = ws_protocol_decoder_infactory_get_string, }; const SubGhzProtocolEncoder ws_protocol_infactory_encoder = { .alloc = NULL, .free = NULL, .deserialize = NULL, .stop = NULL, .yield = NULL, }; const SubGhzProtocol ws_protocol_infactory = { .name = WS_PROTOCOL_INFACTORY_NAME, .type = SubGhzProtocolWeatherStation, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable, .decoder = &ws_protocol_infactory_decoder, .encoder = &ws_protocol_infactory_encoder, }; void* ws_protocol_decoder_infactory_alloc(SubGhzEnvironment* environment) { UNUSED(environment); WSProtocolDecoderInfactory* instance = malloc(sizeof(WSProtocolDecoderInfactory)); instance->base.protocol = &ws_protocol_infactory; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void ws_protocol_decoder_infactory_free(void* context) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; free(instance); } void ws_protocol_decoder_infactory_reset(void* context) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; instance->decoder.parser_step = InfactoryDecoderStepReset; } static bool ws_protocol_infactory_check_crc(WSProtocolDecoderInfactory* instance) { uint8_t msg[] = { instance->decoder.decode_data >> 32, (((instance->decoder.decode_data >> 24) & 0x0F) | (instance->decoder.decode_data & 0x0F) << 4), instance->decoder.decode_data >> 16, instance->decoder.decode_data >> 8, instance->decoder.decode_data}; uint8_t crc = subghz_protocol_blocks_crc4(msg, 4, 0x13, 0); // Koopmann 0x9, CCITT-4; FP-4; ITU-T G.704 crc ^= msg[4] >> 4; // last nibble is only XORed return (crc == ((instance->decoder.decode_data >> 28) & 0x0F)); } /** * Analysis of received data * @param instance Pointer to a WSBlockGeneric* instance */ static void ws_protocol_infactory_remote_controller(WSBlockGeneric* instance) { instance->id = instance->data >> 32; instance->battery_low = (instance->data >> 26) & 1; instance->btn = WS_NO_BTN; instance->temp = ws_block_generic_fahrenheit_to_celsius( ((float)((instance->data >> 12) & 0x0FFF) - 900.0f) / 10.0f); instance->humidity = (((instance->data >> 8) & 0x0F) * 10) + ((instance->data >> 4) & 0x0F); // BCD, 'A0'=100%rH instance->channel = instance->data & 0x03; } void ws_protocol_decoder_infactory_feed(void* context, bool level, uint32_t duration) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; switch(instance->decoder.parser_step) { case InfactoryDecoderStepReset: if((level) && (DURATION_DIFF(duration, ws_protocol_infactory_const.te_short * 2) < ws_protocol_infactory_const.te_delta * 2)) { instance->decoder.parser_step = InfactoryDecoderStepCheckPreambule; instance->decoder.te_last = duration; instance->header_count = 0; } break; case InfactoryDecoderStepCheckPreambule: if(level) { instance->decoder.te_last = duration; } else { if((DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short * 2) < ws_protocol_infactory_const.te_delta * 2) && (DURATION_DIFF(duration, ws_protocol_infactory_const.te_short * 2) < ws_protocol_infactory_const.te_delta * 2)) { //Found preambule instance->header_count++; } else if( (DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short) < ws_protocol_infactory_const.te_delta) && (DURATION_DIFF(duration, ws_protocol_infactory_const.te_short * 16) < ws_protocol_infactory_const.te_delta * 8)) { //Found syncPrefix if(instance->header_count > 3) { instance->decoder.parser_step = InfactoryDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } } else { instance->decoder.parser_step = InfactoryDecoderStepReset; } } break; case InfactoryDecoderStepSaveDuration: if(level) { instance->decoder.te_last = duration; instance->decoder.parser_step = InfactoryDecoderStepCheckDuration; } else { instance->decoder.parser_step = InfactoryDecoderStepReset; } break; case InfactoryDecoderStepCheckDuration: if(!level) { if(duration >= ((uint32_t)ws_protocol_infactory_const.te_short * 30)) { //Found syncPostfix if((instance->decoder.decode_count_bit == ws_protocol_infactory_const.min_count_bit_for_found) && ws_protocol_infactory_check_crc(instance)) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; ws_protocol_infactory_remote_controller(&instance->generic); if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; instance->decoder.parser_step = InfactoryDecoderStepReset; break; } else if( (DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short) < ws_protocol_infactory_const.te_delta) && (DURATION_DIFF(duration, ws_protocol_infactory_const.te_long) < ws_protocol_infactory_const.te_delta * 2)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = InfactoryDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, ws_protocol_infactory_const.te_short) < ws_protocol_infactory_const.te_delta) && (DURATION_DIFF(duration, ws_protocol_infactory_const.te_long * 2) < ws_protocol_infactory_const.te_delta * 4)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = InfactoryDecoderStepSaveDuration; } else { instance->decoder.parser_step = InfactoryDecoderStepReset; } } else { instance->decoder.parser_step = InfactoryDecoderStepReset; } break; } } uint8_t ws_protocol_decoder_infactory_get_hash_data(void* context) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } bool ws_protocol_decoder_infactory_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; return ws_block_generic_serialize(&instance->generic, flipper_format, preset); } bool ws_protocol_decoder_infactory_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; bool ret = false; do { if(!ws_block_generic_deserialize(&instance->generic, flipper_format)) { break; } if(instance->generic.data_count_bit != ws_protocol_infactory_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } ret = true; } while(false); return ret; } void ws_protocol_decoder_infactory_get_string(void* context, FuriString* output) { furi_assert(context); WSProtocolDecoderInfactory* instance = context; furi_string_printf( output, "%s %dbit\r\n" "Key:0x%lX%08lX\r\n" "Sn:0x%lX Ch:%d Bat:%d\r\n" "Temp:%d.%d C Hum:%d%%", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data >> 32), (uint32_t)(instance->generic.data), instance->generic.id, instance->generic.channel, instance->generic.battery_low, (int16_t)instance->generic.temp, abs(((int16_t)(instance->generic.temp * 10) - (((int16_t)instance->generic.temp) * 10))), instance->generic.humidity); }