flipperzero-firmware/lib/subghz/protocols/subghz_protocol_came_twee.c
Albert Kharisov 1db29eaea8
[FL-1946] RPC App launch (#758)
* RPC: Add App start, lock status
 - Add RPC commands Application start, lock status acquiring.
 - Write tests for RPC App system.
 - Replace Unit Tests application with CLI command. This is for CI needs and for tests that run application.
* Fix NDEBUG build
* Update PB submodule
* Fix RPC print (ENABLE DEBUG PRINT!)
* snprintf -> string_t
* Fix Hard Fault (early mutex free)
* printf -> string_t, format, enable tests
* Update submodule: protobuf
* Applications: rollback unit test naming scheme.

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2021-10-13 18:39:37 +03:00

395 lines
14 KiB
C

#include "subghz_protocol_came_twee.h"
#include "subghz_protocol_common.h"
#include <lib/toolbox/manchester-decoder.h>
#include <lib/toolbox/manchester-encoder.h>
/*
* Help
* https://phreakerclub.com/forum/showthread.php?t=635&highlight=came+twin
*
*/
#define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
#define CNT_TO_DIP(dip) \
(dip & 0x0200 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \
(dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \
(dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \
(dip & 0x0001 ? '1' : '0')
struct SubGhzProtocolCameTwee {
SubGhzProtocolCommon common;
ManchesterState manchester_saved_state;
};
typedef enum {
CameTweeDecoderStepReset = 0,
CameTweeDecoderStepDecoderData,
} CameTweeDecoderStep;
SubGhzProtocolCameTwee* subghz_protocol_came_twee_alloc() {
SubGhzProtocolCameTwee* instance = furi_alloc(sizeof(SubGhzProtocolCameTwee));
instance->common.name = "CAME TWEE";
instance->common.code_min_count_bit_for_found = 54;
instance->common.te_short = 500;
instance->common.te_long = 1000;
instance->common.te_delta = 250;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_twee_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_protocol_came_twee_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_protocol_came_twee_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_came_twee_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_came_twee_send_key;
return instance;
}
void subghz_protocol_came_twee_free(SubGhzProtocolCameTwee* instance) {
furi_assert(instance);
free(instance);
}
LevelDuration subghz_protocol_came_twee_add_duration_to_upload(
SubGhzProtocolCameTwee* instance,
ManchesterEncoderResult result) {
LevelDuration data = {.duration = 0, .level = 0};
switch(result) {
case ManchesterEncoderResultShortLow:
data.duration = instance->common.te_short;
data.level = false;
break;
case ManchesterEncoderResultLongLow:
data.duration = instance->common.te_long;
data.level = false;
break;
case ManchesterEncoderResultLongHigh:
data.duration = instance->common.te_long;
data.level = true;
break;
case ManchesterEncoderResultShortHigh:
data.duration = instance->common.te_short;
data.level = true;
break;
default:
printf("DO CRASH HERE\r\n");
// furi_crash
break;
}
return level_duration_make(data.level, data.duration);
}
bool subghz_protocol_came_twee_send_key(
SubGhzProtocolCameTwee* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
const uint32_t magic_numbers_xor[15] = {
0x0E0E0E00,
0x1D1D1D11,
0x2C2C2C22,
0x3B3B3B33,
0x4A4A4A44,
0x59595955,
0x68686866,
0x77777777,
0x86868688,
0x95959599,
0xA4A4A4AA,
0xB3B3B3BB,
0xC2C2C2CC,
0xD1D1D1DD,
0xE0E0E0EE,
};
size_t index = 0;
ManchesterEncoderState enc_state;
manchester_encoder_reset(&enc_state);
ManchesterEncoderResult result;
// encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
// if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
uint64_t temp_parcel = 0x003FFF7200000000; //parcel mask
for(int i = 14; i >= 0; i--) {
temp_parcel = (temp_parcel & 0xFFFFFFFF00000000) |
(instance->common.serial ^ magic_numbers_xor[i]);
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(!manchester_encoder_advance(&enc_state, !bit_read(temp_parcel, i - 1), &result)) {
encoder->upload[index++] =
subghz_protocol_came_twee_add_duration_to_upload(instance, result);
manchester_encoder_advance(&enc_state, !bit_read(temp_parcel, i - 1), &result);
}
encoder->upload[index++] =
subghz_protocol_came_twee_add_duration_to_upload(instance, result);
}
encoder->upload[index] = subghz_protocol_came_twee_add_duration_to_upload(
instance, manchester_encoder_finish(&enc_state));
if(level_duration_get_level(encoder->upload[index])) {
index++;
}
encoder->upload[index++] =
level_duration_make(false, (uint32_t)instance->common.te_long * 51);
}
encoder->size_upload = index;
return true;
}
/** Analysis of received data
*
* @param instance SubGhzProtocolCameTwee instance
*/
void subghz_protocol_came_twee_remote_controller(SubGhzProtocolCameTwee* instance) {
/* Came Twee 54 bit, rolling code 15 parcels with
* a decreasing counter from 0xE to 0x0
* with originally coded dip switches on the console 10 bit code
*
* 0x003FFF72E04A6FEE
* 0x003FFF72D17B5EDD
* 0x003FFF72C2684DCC
* 0x003FFF72B3193CBB
* 0x003FFF72A40E2BAA
* 0x003FFF72953F1A99
* 0x003FFF72862C0988
* 0x003FFF7277DDF877
* 0x003FFF7268C2E766
* 0x003FFF7259F3D655
* 0x003FFF724AE0C544
* 0x003FFF723B91B433
* 0x003FFF722C86A322
* 0x003FFF721DB79211
* 0x003FFF720EA48100
*
* decryption
* the last 32 bits, do XOR by the desired number, divide the result by 4,
* convert the first 16 bits of the resulting 32-bit number to bin and do
* bit-by-bit mirroring, adding up to 10 bits
*
* Example
* Step 1. 0x003FFF721DB79211 => 0x1DB79211
* Step 4. 0x1DB79211 xor 0x1D1D1D11 => 0x00AA8F00
* Step 4. 0x00AA8F00 / 4 => 0x002AA3C0
* Step 5. 0x002AA3C0 => 0x002A
* Step 6. 0x002A bin => b101010
* Step 7. b101010 => b0101010000
* Step 8. b0101010000 => (Dip) Off ON Off ON Off ON Off Off Off Off
*/
const uint32_t magic_numbers_xor[15] = {
0x0E0E0E00,
0x1D1D1D11,
0x2C2C2C22,
0x3B3B3B33,
0x4A4A4A44,
0x59595955,
0x68686866,
0x77777777,
0x86868688,
0x95959599,
0xA4A4A4AA,
0xB3B3B3BB,
0xC2C2C2CC,
0xD1D1D1DD,
0xE0E0E0EE,
};
uint8_t cnt_parcel = (uint8_t)(instance->common.code_last_found & 0xF);
uint32_t data = (uint32_t)(instance->common.code_last_found & 0x0FFFFFFFF);
data = (data ^ magic_numbers_xor[cnt_parcel]);
instance->common.serial = data;
data /= 4;
instance->common.btn = (data >> 4) & 0x0F;
data >>= 16;
data = (uint16_t)subghz_protocol_common_reverse_key(data, 16);
instance->common.cnt = data >> 6;
}
void subghz_protocol_came_twee_reset(SubGhzProtocolCameTwee* instance) {
instance->common.parser_step = CameTweeDecoderStepReset;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
void subghz_protocol_came_twee_parse(
SubGhzProtocolCameTwee* instance,
bool level,
uint32_t duration) {
ManchesterEvent event = ManchesterEventReset;
switch(instance->common.parser_step) {
case CameTweeDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 51) <
instance->common.te_delta * 20)) {
//Found header CAME
instance->common.parser_step = CameTweeDecoderStepDecoderData;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongLow,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongHigh,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->common.parser_step = CameTweeDecoderStepReset;
}
break;
case CameTweeDecoderStepDecoderData:
if(!level) {
if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
event = ManchesterEventShortLow;
} else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) {
event = ManchesterEventLongLow;
} else if(duration >= (instance->common.te_long * 2 + instance->common.te_delta)) {
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongLow,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongHigh,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->common.parser_step = CameTweeDecoderStepReset;
}
} else {
if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
event = ManchesterEventShortHigh;
} else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) {
event = ManchesterEventLongHigh;
} else {
instance->common.parser_step = CameTweeDecoderStepReset;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->common.code_found = (instance->common.code_found << 1) | !data;
instance->common.code_count_bit++;
}
}
break;
}
}
void subghz_protocol_came_twee_to_str(SubGhzProtocolCameTwee* instance, string_t output) {
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n"
"Btn:%lX\r\n"
"DIP:" DIP_PATTERN,
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
instance->common.btn,
CNT_TO_DIP(instance->common.cnt));
}
void subghz_protocol_came_twee_to_save_str(SubGhzProtocolCameTwee* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Key: %08lX%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
(uint32_t)(instance->common.code_last_found >> 32),
(uint32_t)(instance->common.code_last_found & 0xFFFFFFFF));
}
bool subghz_protocol_came_twee_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzProtocolCameTwee* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse key data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
// strlen("Key: ") = 5
string_right(temp_str, 5);
uint8_t buf_key[8] = {0};
if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)) {
break;
}
for(uint8_t i = 0; i < 8; i++) {
instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i];
}
loaded = true;
} while(0);
string_clear(temp_str);
subghz_protocol_came_twee_remote_controller(instance);
return loaded;
}
void subghz_decoder_came_twee_to_load_protocol(SubGhzProtocolCameTwee* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_came_twee_remote_controller(instance);
}