flipperzero-firmware/lib/subghz/protocols/keeloq.c
Georgii Surkov 8582670a34
[FL-2811] Fix PVS-Studio warnings (#2142)
Co-authored-by: あく <alleteam@gmail.com>
Co-authored-by: gornekich <n.gorbadey@gmail.com>
2022-12-26 21:13:30 +09:00

737 lines
29 KiB
C

#include "keeloq.h"
#include "keeloq_common.h"
#include "../subghz_keystore.h"
#include <m-array.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolKeeloq"
static const SubGhzBlockConst subghz_protocol_keeloq_const = {
.te_short = 400,
.te_long = 800,
.te_delta = 140,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderKeeloq {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint16_t header_count;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
struct SubGhzProtocolEncoderKeeloq {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
KeeloqDecoderStepReset = 0,
KeeloqDecoderStepCheckPreambula,
KeeloqDecoderStepSaveDuration,
KeeloqDecoderStepCheckDuration,
} KeeloqDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_keeloq_decoder = {
.alloc = subghz_protocol_decoder_keeloq_alloc,
.free = subghz_protocol_decoder_keeloq_free,
.feed = subghz_protocol_decoder_keeloq_feed,
.reset = subghz_protocol_decoder_keeloq_reset,
.get_hash_data = subghz_protocol_decoder_keeloq_get_hash_data,
.serialize = subghz_protocol_decoder_keeloq_serialize,
.deserialize = subghz_protocol_decoder_keeloq_deserialize,
.get_string = subghz_protocol_decoder_keeloq_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_keeloq_encoder = {
.alloc = subghz_protocol_encoder_keeloq_alloc,
.free = subghz_protocol_encoder_keeloq_free,
.deserialize = subghz_protocol_encoder_keeloq_deserialize,
.stop = subghz_protocol_encoder_keeloq_stop,
.yield = subghz_protocol_encoder_keeloq_yield,
};
const SubGhzProtocol subghz_protocol_keeloq = {
.name = SUBGHZ_PROTOCOL_KEELOQ_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_315 |
SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load |
SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_keeloq_decoder,
.encoder = &subghz_protocol_keeloq_encoder,
};
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
*/
static void subghz_protocol_keeloq_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name);
void* subghz_protocol_encoder_keeloq_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolEncoderKeeloq* instance = malloc(sizeof(SubGhzProtocolEncoderKeeloq));
instance->base.protocol = &subghz_protocol_keeloq;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
instance->encoder.repeat = 10;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_keeloq_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Key generation from simple data
* @param instance Pointer to a SubGhzProtocolEncoderKeeloq* instance
* @param btn Button number, 4 bit
*/
static bool subghz_protocol_keeloq_gen_data(SubGhzProtocolEncoderKeeloq* instance, uint8_t btn) {
instance->generic.cnt++;
uint32_t fix = (uint32_t)btn << 28 | instance->generic.serial;
uint32_t decrypt = (uint32_t)btn << 28 |
(instance->generic.serial & 0x3FF)
<< 16 | //ToDo in some protocols the discriminator is 0
instance->generic.cnt;
uint32_t hop = 0;
uint64_t man = 0;
int res = 0;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
res = strcmp(furi_string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
hop = subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key);
break;
case KEELOQ_LEARNING_NORMAL:
//Simple Learning
man =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1:
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
instance->generic.serial, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_UNKNOWN:
hop = 0; //todo
break;
}
break;
}
}
if(hop) {
uint64_t yek = (uint64_t)fix << 32 | hop;
instance->generic.data =
subghz_protocol_blocks_reverse_key(yek, instance->generic.data_count_bit);
return true;
} else {
instance->manufacture_name = "Unknown";
return false;
}
}
bool subghz_protocol_keeloq_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint16_t cnt,
const char* manufacture_name,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
instance->generic.serial = serial;
instance->generic.cnt = cnt;
instance->manufacture_name = manufacture_name;
instance->generic.data_count_bit = 64;
bool res = subghz_protocol_keeloq_gen_data(instance, btn);
if(res) {
res = subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
return res;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderKeeloq instance
* @return true On success
*/
static bool
subghz_protocol_encoder_keeloq_get_upload(SubGhzProtocolEncoderKeeloq* instance, uint8_t btn) {
furi_assert(instance);
//gen new key
if(subghz_protocol_keeloq_gen_data(instance, btn)) {
//ToDo if you need to add a callback to automatically update the data on the display
} else {
return false;
}
size_t index = 0;
size_t size_upload = 11 * 2 + 2 + (instance->generic.data_count_bit * 2) + 4;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
for(uint8_t i = 11; i > 0; i--) {
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short);
}
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short * 10);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_long);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short);
}
}
// +send 2 status bit
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_long);
// send end
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_keeloq_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_keeloq_const.te_short * 40);
return true;
}
bool subghz_protocol_encoder_keeloq_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderKeeloq* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_keeloq_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
subghz_protocol_keeloq_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
if(strcmp(instance->manufacture_name, "DoorHan") != 0) {
FURI_LOG_E(TAG, "Wrong manufacturer name");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_keeloq_get_upload(instance, instance->generic.btn)) break;
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> (i * 8)) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_keeloq_stop(void* context) {
SubGhzProtocolEncoderKeeloq* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_keeloq_yield(void* context) {
SubGhzProtocolEncoderKeeloq* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_keeloq_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolDecoderKeeloq* instance = malloc(sizeof(SubGhzProtocolDecoderKeeloq));
instance->base.protocol = &subghz_protocol_keeloq;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
return instance;
}
void subghz_protocol_decoder_keeloq_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
free(instance);
}
void subghz_protocol_decoder_keeloq_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
instance->decoder.parser_step = KeeloqDecoderStepReset;
}
void subghz_protocol_decoder_keeloq_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
switch(instance->decoder.parser_step) {
case KeeloqDecoderStepReset:
if((level) && DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta) {
instance->decoder.parser_step = KeeloqDecoderStepCheckPreambula;
instance->header_count++;
}
break;
case KeeloqDecoderStepCheckPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta)) {
instance->decoder.parser_step = KeeloqDecoderStepReset;
break;
}
if((instance->header_count > 2) &&
(DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short * 10) <
subghz_protocol_keeloq_const.te_delta * 10)) {
// Found header
instance->decoder.parser_step = KeeloqDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = KeeloqDecoderStepReset;
instance->header_count = 0;
}
break;
case KeeloqDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = KeeloqDecoderStepCheckDuration;
}
break;
case KeeloqDecoderStepCheckDuration:
if(!level) {
if(duration >= ((uint32_t)subghz_protocol_keeloq_const.te_short * 2 +
subghz_protocol_keeloq_const.te_delta)) {
// Found end TX
instance->decoder.parser_step = KeeloqDecoderStepReset;
if(instance->decoder.decode_count_bit >=
subghz_protocol_keeloq_const.min_count_bit_for_found) {
if(instance->generic.data != instance->decoder.decode_data) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->header_count = 0;
}
break;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_long) <
subghz_protocol_keeloq_const.te_delta * 2)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_keeloq_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
}
instance->decoder.parser_step = KeeloqDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_keeloq_const.te_long) <
subghz_protocol_keeloq_const.te_delta * 2) &&
(DURATION_DIFF(duration, subghz_protocol_keeloq_const.te_short) <
subghz_protocol_keeloq_const.te_delta)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_keeloq_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
}
instance->decoder.parser_step = KeeloqDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = KeeloqDecoderStepReset;
instance->header_count = 0;
}
} else {
instance->decoder.parser_step = KeeloqDecoderStepReset;
instance->header_count = 0;
}
break;
}
}
/**
* Validation of decrypt data.
* @param instance Pointer to a SubGhzBlockGeneric instance
* @param decrypt Decrypd data
* @param btn Button number, 4 bit
* @param end_serial decrement the last 10 bits of the serial number
* @return true On success
*/
static inline bool subghz_protocol_keeloq_check_decrypt(
SubGhzBlockGeneric* instance,
uint32_t decrypt,
uint8_t btn,
uint32_t end_serial) {
furi_assert(instance);
if((decrypt >> 28 == btn) && (((((uint16_t)(decrypt >> 16)) & 0xFF) == end_serial) ||
((((uint16_t)(decrypt >> 16)) & 0xFF) == 0))) {
instance->cnt = decrypt & 0x0000FFFF;
return true;
}
return false;
}
/**
* Checking the accepted code against the database manafacture key
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param fix Fix part of the parcel
* @param hop Hop encrypted part of the parcel
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
* @return true on successful search
*/
static uint8_t subghz_protocol_keeloq_check_remote_controller_selector(
SubGhzBlockGeneric* instance,
uint32_t fix,
uint32_t hop,
SubGhzKeystore* keystore,
const char** manufacture_name) {
// protocol HCS300 uses 10 bits in discriminator, HCS200 uses 8 bits, for backward compatibility, we are looking for the 8-bit pattern
// HCS300 -> uint16_t end_serial = (uint16_t)(fix & 0x3FF);
// HCS200 -> uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint8_t btn = (uint8_t)(fix >> 28);
uint32_t decrypt = 0;
uint64_t man;
uint32_t seed = 0;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_SECURE:
man = subghz_protocol_keeloq_common_secure_learning(
fix, seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_XOR_TYPE_1:
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_1:
man = subghz_protocol_keeloq_common_magic_serial_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_2:
man = subghz_protocol_keeloq_common_magic_serial_type2_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_MAGIC_SERIAL_TYPE_3:
man = subghz_protocol_keeloq_common_magic_serial_type3_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
//###########################
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man = subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
// Secure Learning
man = subghz_protocol_keeloq_common_secure_learning(
fix, seed, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_secure_learning(fix, seed, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
// Magic xor type1 learning
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(
fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
// Check for mirrored man
man = subghz_protocol_keeloq_common_magic_xor_type1_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man);
if(subghz_protocol_keeloq_check_decrypt(instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
return 1;
}
break;
}
}
*manufacture_name = "Unknown";
instance->cnt = 0;
return 0;
}
static void subghz_protocol_keeloq_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name) {
uint64_t key = subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
// Check key AN-Motors
if((key_hop >> 24) == ((key_hop >> 16) & 0x00ff) &&
(key_fix >> 28) == ((key_hop >> 12) & 0x0f) && (key_hop & 0xFFF) == 0x404) {
*manufacture_name = "AN-Motors";
instance->cnt = key_hop >> 16;
} else if((key_hop & 0xFFF) == (0x000) && (key_fix >> 28) == ((key_hop >> 12) & 0x0f)) {
*manufacture_name = "HCS101";
instance->cnt = key_hop >> 16;
} else {
subghz_protocol_keeloq_check_remote_controller_selector(
instance, key_fix, key_hop, keystore, manufacture_name);
}
instance->serial = key_fix & 0x0FFFFFFF;
instance->btn = key_fix >> 28;
}
uint8_t subghz_protocol_decoder_keeloq_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_keeloq_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
subghz_protocol_keeloq_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
bool res = subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
if(res && !flipper_format_write_string_cstr(
flipper_format, "Manufacture", instance->manufacture_name)) {
FURI_LOG_E(TAG, "Unable to add manufacture name");
res = false;
}
return res;
}
bool subghz_protocol_decoder_keeloq_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_keeloq_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
res = true;
} while(false);
return res;
}
void subghz_protocol_decoder_keeloq_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderKeeloq* instance = context;
subghz_protocol_keeloq_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04lX\r\n"
"Hop:0x%08lX Btn:%01X\r\n"
"MF:%s\r\n"
"Sn:0x%07lX \r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->generic.cnt,
code_found_reverse_lo,
instance->generic.btn,
instance->manufacture_name,
instance->generic.serial);
}