flipperzero-firmware/lib/subghz/subghz_keystore.c
あく 22a4bac448
[FL-1934] Core: wipe memory after free. SubGhz: key encryption tool. (#797)
* Core: wipe memory after free. RFID,iButton: fix iterator use after invalidation.

* Debug: support unix wildcards for register matching in svd, update MCU description file and minify it.

* Toolbox: getter for File in FlipperFile.

* Makefile: conditional flashing

* SubGhz: keeloq_mfcodes encryption tool.

* FuriHal: proper IV handling on CBC in crypto. SubGhz: add support for encrypted keeloq keys. Makefile: move formatting to top Makefile.

* SubGhz: rename some function names to match naming scheme.

* SubGhz: encryption tool, fix windows line endings

Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
2021-11-01 16:11:25 +03:00

318 lines
12 KiB
C

#include "subghz_keystore.h"
#include <furi.h>
#include <furi-hal.h>
#include <storage/storage.h>
#include <lib/toolbox/hex.h>
#include <lib/toolbox/flipper-file.h>
#define SUBGHZ_KEYSTORE_TAG "SubGhzParser"
#define FILE_BUFFER_SIZE 64
#define SUBGHZ_KEYSTORE_FILE_TYPE "Flipper SubGhz Keystore File"
#define SUBGHZ_KEYSTORE_FILE_VERSION 0
#define SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT 1
#define SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE 512
#define SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE (SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE*2)
typedef enum {
SubGhzKeystoreEncryptionNone,
SubGhzKeystoreEncryptionAES256,
} SubGhzKeystoreEncryption;
struct SubGhzKeystore {
SubGhzKeyArray_t data;
};
SubGhzKeystore* subghz_keystore_alloc() {
SubGhzKeystore* instance = furi_alloc(sizeof(SubGhzKeystore));
SubGhzKeyArray_init(instance->data);
return instance;
}
void subghz_keystore_free(SubGhzKeystore* instance) {
furi_assert(instance);
for
M_EACH(manufacture_code, instance->data, SubGhzKeyArray_t) {
string_clear(manufacture_code->name);
manufacture_code->key = 0;
}
SubGhzKeyArray_clear(instance->data);
free(instance);
}
static void subghz_keystore_add_key(SubGhzKeystore* instance, const char* name, uint64_t key, uint16_t type) {
SubGhzKey* manufacture_code = SubGhzKeyArray_push_raw(instance->data);
string_init_set_str(manufacture_code->name, name);
manufacture_code->key = key;
manufacture_code->type = type;
}
static bool subghz_keystore_process_line(SubGhzKeystore* instance, char* line) {
uint64_t key = 0;
uint16_t type = 0;
char skey[17] = {0};
char name[65] = {0};
int ret = sscanf(line, "%16s:%hu:%64s", skey, &type, name);
key = strtoull(skey, NULL, 16);
if (ret == 3) {
subghz_keystore_add_key(instance, name, key, type);
return true;
} else {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Failed to load line: %s\r\n", line);
return false;
}
}
static void subghz_keystore_mess_with_iv(uint8_t* iv) {
// Please do not share decrypted manufacture keys
// Sharing them will bring some discomfort to legal owners
// And potential legal action against you
// While you reading this code think about your own personal responsibility
asm volatile(
"movs r0, #0x0 \n"
"movs r1, #0x0 \n"
"movs r2, #0x0 \n"
"movs r3, #0x0 \n"
"nani: \n"
"ldrb r1, [r0, %0]\n"
"mov r2, r1 \n"
"add r1, r3 \n"
"mov r3, r2 \n"
"strb r1, [r0, %0]\n"
"adds r0, #0x1 \n"
"cmp r0, #0xF \n"
"bls nani \n"
:
: "r"(iv)
: "r0", "r1", "r2", "r3", "memory");
}
static bool subghz_keystore_read_file(SubGhzKeystore* instance, File* file, uint8_t* iv) {
bool result = true;
char buffer[FILE_BUFFER_SIZE];
char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
size_t encrypted_line_cursor = 0;
if (iv) furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv);
size_t ret = 0;
do {
ret = storage_file_read(file, buffer, FILE_BUFFER_SIZE);
for (uint16_t i=0; i < ret; i++) {
if (buffer[i] == '\n' && encrypted_line_cursor > 0) {
// Process line
if(iv) {
// Data alignment check, 32 instead of 16 because of hex encoding
size_t len = strlen(encrypted_line);
if (len % 32 == 0) {
// Inplace hex to bin conversion
for (size_t i=0; i<len; i+=2) {
uint8_t hi_nibble=0;
uint8_t lo_nibble=0;
hex_char_to_hex_nibble(encrypted_line[i], &hi_nibble);
hex_char_to_hex_nibble(encrypted_line[i+1], &lo_nibble);
encrypted_line[i/2] = (hi_nibble<<4) | lo_nibble;
}
len /= 2;
if(furi_hal_crypto_decrypt((uint8_t*)encrypted_line, (uint8_t*)decrypted_line, len)) {
subghz_keystore_process_line(instance, decrypted_line);
} else {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Decryption failed");
result = false;
break;
}
} else {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Invalid encrypted data: %s", encrypted_line);
}
} else {
subghz_keystore_process_line(instance, encrypted_line);
}
// reset line buffer
memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
encrypted_line_cursor = 0;
} else if (buffer[i] == '\r' || buffer[i] == '\n') {
// do not add line endings to the buffer
} else {
if (encrypted_line_cursor < SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE) {
encrypted_line[encrypted_line_cursor] = buffer[i];
encrypted_line_cursor++;
} else {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Malformed file");
result = false;
break;
}
}
}
} while(ret > 0 && result);
if (iv) furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT);
free(encrypted_line);
free(decrypted_line);
return result;
}
bool subghz_keystore_load(SubGhzKeystore* instance, const char* file_name) {
furi_assert(instance);
bool result = false;
uint8_t iv[16];
uint32_t version;
SubGhzKeystoreEncryption encryption;
string_t filetype;
string_init(filetype);
Storage* storage = furi_record_open("storage");
FlipperFile* flipper_file = flipper_file_alloc(storage);
do {
if(!flipper_file_open_read(flipper_file, file_name)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to open file for read: %s", file_name);
break;
}
if(!flipper_file_read_header(flipper_file, filetype, &version)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Missing or incorrect header");
break;
}
if(!flipper_file_read_uint32(flipper_file, "Encryption", (uint32_t*)&encryption)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Missing encryption type");
break;
}
if (strcmp(string_get_cstr(filetype), SUBGHZ_KEYSTORE_FILE_TYPE) != 0
|| version != SUBGHZ_KEYSTORE_FILE_VERSION) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Type or version mismatch");
break;
}
File* file = flipper_file_get_file(flipper_file);
if (encryption == SubGhzKeystoreEncryptionNone) {
result = subghz_keystore_read_file(instance, file, NULL);
}else if (encryption == SubGhzKeystoreEncryptionAES256) {
if(!flipper_file_read_hex_array(flipper_file, "IV", iv, 16)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Missing IV");
break;
}
subghz_keystore_mess_with_iv(iv);
result = subghz_keystore_read_file(instance, file, iv);
} else {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unknown encryption");
break;
}
} while(0);
flipper_file_close(flipper_file);
flipper_file_free(flipper_file);
furi_record_close("storage");
string_clear(filetype);
return result;
}
bool subghz_keystore_save(SubGhzKeystore* instance, const char* file_name, uint8_t* iv) {
furi_assert(instance);
bool result = false;
Storage* storage = furi_record_open("storage");
char* decrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
char* encrypted_line = furi_alloc(SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
FlipperFile* flipper_file = flipper_file_alloc(storage);
do {
if(!flipper_file_new_write(flipper_file, file_name)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to open file for write: %s", file_name);
break;
}
if(!flipper_file_write_header_cstr(flipper_file, SUBGHZ_KEYSTORE_FILE_TYPE, SUBGHZ_KEYSTORE_FILE_VERSION)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to add header");
break;
}
if(!flipper_file_write_uint32(flipper_file, "Encryption", SubGhzKeystoreEncryptionAES256)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to add Encryption");
break;
}
if(!flipper_file_write_hex_array(flipper_file, "IV", iv, 16)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to add IV");
break;
}
subghz_keystore_mess_with_iv(iv);
if(!furi_hal_crypto_store_load_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT, iv)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Unable to load encryption key");
break;
}
File* file = flipper_file_get_file(flipper_file);
size_t encrypted_line_count = 0;
for
M_EACH(
key,
instance->data,
SubGhzKeyArray_t) {
// Wipe buffer before packing
memset(decrypted_line, 0, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
memset(encrypted_line, 0, SUBGHZ_KEYSTORE_FILE_ENCRYPTED_LINE_SIZE);
// Form unecreypted line
int len = snprintf(
decrypted_line, SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE,
"%08lX%08lX:%hu:%s",
(uint32_t)(key->key>>32), (uint32_t)key->key, key->type, string_get_cstr(key->name));
// Verify length and align
furi_assert(len > 0);
if (len % 16 != 0) {
len += (16 - len % 16);
}
furi_assert(len % 16 == 0);
furi_assert(len <= SUBGHZ_KEYSTORE_FILE_DECRYPTED_LINE_SIZE);
// Form encrypted line
if(!furi_hal_crypto_encrypt((uint8_t*)decrypted_line, (uint8_t*)encrypted_line, len)) {
FURI_LOG_E(SUBGHZ_KEYSTORE_TAG, "Encryption failed");
break;
}
// HEX Encode encrypted line
const char xx[]= "0123456789ABCDEF";
for (size_t i=0; i<len; i++) {
size_t cursor = len - i - 1;
size_t hex_cursor = len*2 - i*2 - 1;
encrypted_line[hex_cursor] = xx[encrypted_line[cursor] & 0xF];
encrypted_line[hex_cursor-1] = xx[(encrypted_line[cursor]>>4) & 0xF];
}
storage_file_write(file, encrypted_line, strlen(encrypted_line));
storage_file_write(file, "\n", 1);
encrypted_line_count++;
FURI_LOG_I(SUBGHZ_KEYSTORE_TAG, "Encrypted: `%s` -> `%s`", decrypted_line, encrypted_line);
}
furi_hal_crypto_store_unload_key(SUBGHZ_KEYSTORE_FILE_ENCRYPTION_KEY_SLOT);
result = encrypted_line_count == SubGhzKeyArray_size(instance->data);
} while(0);
flipper_file_close(flipper_file);
flipper_file_free(flipper_file);
free(encrypted_line);
free(decrypted_line);
furi_record_close("storage");
return result;
}
SubGhzKeyArray_t* subghz_keystore_get_data(SubGhzKeystore* instance) {
furi_assert(instance);
return &instance->data;
}