flipperzero-firmware/lib/one_wire/one_wire_slave.c
Georgii Surkov 8b224ecb15
[FL-3179] 1-Wire Overdrive Mode (#2522)
* Separate ibutton to its own module, add one_wire to f18
* Move onewire cli to a separate app
* Add definitions for normal and overdrive timings
* Update api definitions
* Add rough overdrive timings definition for onewire emulation
* Remove one_wire_host_timing.h
* Add rough overdrive timings for onewire host
* Improve overdrive mode
* Working overdrive mode from flipper to flipper
* Update thermometer example app
* Turn on otg power when running thermometer example app
* Implement reset overdrive switching
* Always exit out of overdrive mode
* Improve overdrive timings
* Fix typos
* Fix reset behaviour
* Use overdrive mode everywhere in DS1996
* Improve comments
* Bump API version

Co-authored-by: あく <alleteam@gmail.com>
2023-03-22 23:54:06 +09:00

358 lines
10 KiB
C

#include "one_wire_slave.h"
#include <furi.h>
#include <furi_hal.h>
#define TH_TIMEOUT_MAX 15000 /* Maximum time before general timeout */
typedef enum {
OneWireSlaveErrorNone = 0,
OneWireSlaveErrorResetInProgress,
OneWireSlaveErrorPresenceConflict,
OneWireSlaveErrorInvalidCommand,
OneWireSlaveErrorTimeout,
} OneWireSlaveError;
typedef struct {
uint16_t trstl_min; /* Minimum Reset Low time */
uint16_t trstl_max; /* Maximum Reset Low time */
uint16_t tpdh_typ; /* Typical Presence Detect High time */
uint16_t tpdl_min; /* Minimum Presence Detect Low time */
uint16_t tpdl_max; /* Maximum Presence Detect Low time */
uint16_t tslot_min; /* Minimum Read/Write Slot time */
uint16_t tslot_max; /* Maximum Read/Write Slot time */
uint16_t tw1l_max; /* Maximum Master Write 1 time */
uint16_t trl_tmsr_max; /* Maximum Master Read Low + Read Sample time */
} OneWireSlaveTimings;
struct OneWireSlave {
const GpioPin* gpio_pin;
const OneWireSlaveTimings* timings;
OneWireSlaveError error;
bool is_first_reset;
bool is_short_reset;
OneWireSlaveResetCallback reset_callback;
OneWireSlaveCommandCallback command_callback;
OneWireSlaveResultCallback result_callback;
void* reset_callback_context;
void* result_callback_context;
void* command_callback_context;
};
static const OneWireSlaveTimings onewire_slave_timings_normal = {
.trstl_min = 270,
.trstl_max = 1200,
.tpdh_typ = 20,
.tpdl_min = 100,
.tpdl_max = 480,
.tslot_min = 60,
.tslot_max = 135,
.tw1l_max = 20,
.trl_tmsr_max = 30,
};
static const OneWireSlaveTimings onewire_slave_timings_overdrive = {
.trstl_min = 48,
.trstl_max = 80,
.tpdh_typ = 0,
.tpdl_min = 8,
.tpdl_max = 24,
.tslot_min = 6,
.tslot_max = 16,
.tw1l_max = 2,
.trl_tmsr_max = 3,
};
/*********************** PRIVATE ***********************/
static bool
onewire_slave_wait_while_gpio_is(OneWireSlave* bus, uint32_t time_us, const bool pin_value) {
const uint32_t time_start = DWT->CYCCNT;
const uint32_t time_ticks = time_us * furi_hal_cortex_instructions_per_microsecond();
uint32_t time_elapsed;
do { //-V1044
time_elapsed = DWT->CYCCNT - time_start;
if(furi_hal_gpio_read(bus->gpio_pin) != pin_value) {
return time_ticks >= time_elapsed;
}
} while(time_elapsed < time_ticks);
return false;
}
static inline bool onewire_slave_show_presence(OneWireSlave* bus) {
const OneWireSlaveTimings* timings = bus->timings;
// wait until the bus is high (might return immediately)
onewire_slave_wait_while_gpio_is(bus, timings->trstl_max, false);
// wait while master delay presence check
furi_delay_us(timings->tpdh_typ);
// show presence
furi_hal_gpio_write(bus->gpio_pin, false);
furi_delay_us(timings->tpdl_min);
furi_hal_gpio_write(bus->gpio_pin, true);
// somebody also can show presence
const uint32_t wait_low_time = timings->tpdl_max - timings->tpdl_min;
// so we will wait
if(!onewire_slave_wait_while_gpio_is(bus, wait_low_time, false)) {
bus->error = OneWireSlaveErrorPresenceConflict;
return false;
}
return true;
}
static inline bool onewire_slave_receive_and_process_command(OneWireSlave* bus) {
/* Reset condition detected, send a presence pulse and reset protocol state */
if(bus->error == OneWireSlaveErrorResetInProgress) {
if(!bus->is_first_reset) {
/* Guess the reset type */
bus->is_short_reset = onewire_slave_wait_while_gpio_is(
bus,
onewire_slave_timings_overdrive.trstl_max -
onewire_slave_timings_overdrive.tslot_max,
false);
} else {
bus->is_first_reset = false;
}
furi_assert(bus->reset_callback);
if(bus->reset_callback(bus->is_short_reset, bus->reset_callback_context)) {
if(onewire_slave_show_presence(bus)) {
bus->error = OneWireSlaveErrorNone;
return true;
}
}
} else if(bus->error == OneWireSlaveErrorNone) {
uint8_t command;
if(onewire_slave_receive(bus, &command, sizeof(command))) {
furi_assert(bus->command_callback);
if(bus->command_callback(command, bus->command_callback_context)) {
return true;
}
}
return (bus->error == OneWireSlaveErrorResetInProgress);
}
return false;
}
static inline bool onewire_slave_bus_start(OneWireSlave* bus) {
FURI_CRITICAL_ENTER();
furi_hal_gpio_init(bus->gpio_pin, GpioModeOutputOpenDrain, GpioPullNo, GpioSpeedLow);
while(onewire_slave_receive_and_process_command(bus))
;
const bool result = (bus->error == OneWireSlaveErrorNone);
furi_hal_gpio_init(bus->gpio_pin, GpioModeInterruptRiseFall, GpioPullNo, GpioSpeedLow);
FURI_CRITICAL_EXIT();
return result;
}
static void onewire_slave_exti_callback(void* context) {
OneWireSlave* bus = context;
const volatile bool input_state = furi_hal_gpio_read(bus->gpio_pin);
static uint32_t pulse_start = 0;
if(input_state) {
const uint32_t pulse_length =
(DWT->CYCCNT - pulse_start) / furi_hal_cortex_instructions_per_microsecond();
if((pulse_length >= onewire_slave_timings_overdrive.trstl_min) &&
(pulse_length <= onewire_slave_timings_normal.trstl_max)) {
/* Start in reset state in order to send a presence pulse immediately */
bus->error = OneWireSlaveErrorResetInProgress;
/* Determine reset type (chooses speed mode if supported by the emulated device) */
bus->is_short_reset = pulse_length <= onewire_slave_timings_overdrive.trstl_max;
/* Initial reset allows going directly into overdrive mode */
bus->is_first_reset = true;
const bool result = onewire_slave_bus_start(bus);
if(result && bus->result_callback != NULL) {
bus->result_callback(bus->result_callback_context);
}
}
} else {
pulse_start = DWT->CYCCNT;
}
};
/*********************** PUBLIC ***********************/
OneWireSlave* onewire_slave_alloc(const GpioPin* gpio_pin) {
OneWireSlave* bus = malloc(sizeof(OneWireSlave));
bus->gpio_pin = gpio_pin;
bus->timings = &onewire_slave_timings_normal;
bus->error = OneWireSlaveErrorNone;
return bus;
}
void onewire_slave_free(OneWireSlave* bus) {
onewire_slave_stop(bus);
free(bus);
}
void onewire_slave_start(OneWireSlave* bus) {
furi_hal_gpio_add_int_callback(bus->gpio_pin, onewire_slave_exti_callback, bus);
furi_hal_gpio_write(bus->gpio_pin, true);
furi_hal_gpio_init(bus->gpio_pin, GpioModeInterruptRiseFall, GpioPullNo, GpioSpeedLow);
}
void onewire_slave_stop(OneWireSlave* bus) {
furi_hal_gpio_write(bus->gpio_pin, true);
furi_hal_gpio_init(bus->gpio_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
furi_hal_gpio_remove_int_callback(bus->gpio_pin);
}
void onewire_slave_set_reset_callback(
OneWireSlave* bus,
OneWireSlaveResetCallback callback,
void* context) {
bus->reset_callback = callback;
bus->reset_callback_context = context;
}
void onewire_slave_set_command_callback(
OneWireSlave* bus,
OneWireSlaveCommandCallback callback,
void* context) {
bus->command_callback = callback;
bus->command_callback_context = context;
}
void onewire_slave_set_result_callback(
OneWireSlave* bus,
OneWireSlaveResultCallback result_cb,
void* context) {
bus->result_callback = result_cb;
bus->result_callback_context = context;
}
bool onewire_slave_receive_bit(OneWireSlave* bus) {
const OneWireSlaveTimings* timings = bus->timings;
// wait while bus is low
if(!onewire_slave_wait_while_gpio_is(bus, timings->tslot_max, false)) {
bus->error = OneWireSlaveErrorResetInProgress;
return false;
}
// wait while bus is high
if(!onewire_slave_wait_while_gpio_is(bus, TH_TIMEOUT_MAX, true)) {
bus->error = OneWireSlaveErrorTimeout;
return false;
}
// wait a time of zero
return onewire_slave_wait_while_gpio_is(bus, timings->tw1l_max, false);
}
bool onewire_slave_send_bit(OneWireSlave* bus, bool value) {
const OneWireSlaveTimings* timings = bus->timings;
// wait while bus is low
if(!onewire_slave_wait_while_gpio_is(bus, timings->tslot_max, false)) {
bus->error = OneWireSlaveErrorResetInProgress;
return false;
}
// wait while bus is high
if(!onewire_slave_wait_while_gpio_is(bus, TH_TIMEOUT_MAX, true)) {
bus->error = OneWireSlaveErrorTimeout;
return false;
}
// choose write time
uint32_t time;
if(!value) {
furi_hal_gpio_write(bus->gpio_pin, false);
time = timings->trl_tmsr_max;
} else {
time = timings->tslot_min;
}
// hold line for ZERO or ONE time
furi_delay_us(time);
furi_hal_gpio_write(bus->gpio_pin, true);
return true;
}
bool onewire_slave_send(OneWireSlave* bus, const uint8_t* data, size_t data_size) {
furi_hal_gpio_write(bus->gpio_pin, true);
size_t bytes_sent = 0;
// bytes loop
for(; bytes_sent < data_size; ++bytes_sent) {
const uint8_t data_byte = data[bytes_sent];
// bit loop
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(!onewire_slave_send_bit(bus, bit_mask & data_byte)) {
return false;
}
}
}
return true;
}
bool onewire_slave_receive(OneWireSlave* bus, uint8_t* data, size_t data_size) {
furi_hal_gpio_write(bus->gpio_pin, true);
size_t bytes_received = 0;
for(; bytes_received < data_size; ++bytes_received) {
uint8_t value = 0;
for(uint8_t bit_mask = 0x01; bit_mask != 0; bit_mask <<= 1) {
if(onewire_slave_receive_bit(bus)) {
value |= bit_mask;
}
if(bus->error != OneWireSlaveErrorNone) {
return false;
}
}
data[bytes_received] = value;
}
return true;
}
void onewire_slave_set_overdrive(OneWireSlave* bus, bool set) {
const OneWireSlaveTimings* new_timings = set ? &onewire_slave_timings_overdrive :
&onewire_slave_timings_normal;
if(bus->timings != new_timings) {
/* Prevent erroneous reset by waiting for the previous time slot to finish */
onewire_slave_wait_while_gpio_is(bus, bus->timings->tslot_max, false);
bus->timings = new_timings;
}
}