flipperzero-firmware/lib/subghz/protocols/nice_flo.c
Max Lapan 3360f818a1
Subghz: Adding checks for get_upload functions (#1704)
* Adding checks for get_upload functions
  Almost in every protocol, function which generates upload might fail and return false.
  But we don't check this result, which might end up sending random memory contents to the air.
* Format sources and fix crash on ivalid bit count in chamberlain

Co-authored-by: あく <alleteam@gmail.com>
2022-09-20 14:29:10 +09:00

331 lines
12 KiB
C

#include "nice_flo.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolNiceFLO"
static const SubGhzBlockConst subghz_protocol_nice_flo_const = {
.te_short = 700,
.te_long = 1400,
.te_delta = 200,
.min_count_bit_for_found = 12,
};
struct SubGhzProtocolDecoderNiceFlo {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderNiceFlo {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
NiceFloDecoderStepReset = 0,
NiceFloDecoderStepFoundStartBit,
NiceFloDecoderStepSaveDuration,
NiceFloDecoderStepCheckDuration,
} NiceFloDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_nice_flo_decoder = {
.alloc = subghz_protocol_decoder_nice_flo_alloc,
.free = subghz_protocol_decoder_nice_flo_free,
.feed = subghz_protocol_decoder_nice_flo_feed,
.reset = subghz_protocol_decoder_nice_flo_reset,
.get_hash_data = subghz_protocol_decoder_nice_flo_get_hash_data,
.serialize = subghz_protocol_decoder_nice_flo_serialize,
.deserialize = subghz_protocol_decoder_nice_flo_deserialize,
.get_string = subghz_protocol_decoder_nice_flo_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_nice_flo_encoder = {
.alloc = subghz_protocol_encoder_nice_flo_alloc,
.free = subghz_protocol_encoder_nice_flo_free,
.deserialize = subghz_protocol_encoder_nice_flo_deserialize,
.stop = subghz_protocol_encoder_nice_flo_stop,
.yield = subghz_protocol_encoder_nice_flo_yield,
};
const SubGhzProtocol subghz_protocol_nice_flo = {
.name = SUBGHZ_PROTOCOL_NICE_FLO_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM |
SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save |
SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_nice_flo_decoder,
.encoder = &subghz_protocol_nice_flo_encoder,
};
void* subghz_protocol_encoder_nice_flo_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderNiceFlo* instance = malloc(sizeof(SubGhzProtocolEncoderNiceFlo));
instance->base.protocol = &subghz_protocol_nice_flo;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 52; //max 24bit*2 + 2 (start, stop)
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_nice_flo_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderNiceFlo* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderNiceFlo instance
* @return true On success
*/
static bool subghz_protocol_encoder_nice_flo_get_upload(SubGhzProtocolEncoderNiceFlo* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2) + 2;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_nice_flo_const.te_short * 36);
//Send start bit
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_nice_flo_const.te_short);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_nice_flo_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_nice_flo_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_nice_flo_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_nice_flo_const.te_long);
}
}
return true;
}
bool subghz_protocol_encoder_nice_flo_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderNiceFlo* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if((instance->generic.data_count_bit !=
subghz_protocol_nice_flo_const.min_count_bit_for_found) &&
(instance->generic.data_count_bit !=
2 * subghz_protocol_nice_flo_const.min_count_bit_for_found)) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_nice_flo_get_upload(instance)) break;
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_nice_flo_stop(void* context) {
SubGhzProtocolEncoderNiceFlo* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_nice_flo_yield(void* context) {
SubGhzProtocolEncoderNiceFlo* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_nice_flo_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderNiceFlo* instance = malloc(sizeof(SubGhzProtocolDecoderNiceFlo));
instance->base.protocol = &subghz_protocol_nice_flo;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_nice_flo_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
free(instance);
}
void subghz_protocol_decoder_nice_flo_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
void subghz_protocol_decoder_nice_flo_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
switch(instance->decoder.parser_step) {
case NiceFloDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_short * 36) <
subghz_protocol_nice_flo_const.te_delta * 36)) {
//Found header Nice Flo
instance->decoder.parser_step = NiceFloDecoderStepFoundStartBit;
}
break;
case NiceFloDecoderStepFoundStartBit:
if(!level) {
break;
} else if(
DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_short) <
subghz_protocol_nice_flo_const.te_delta) {
//Found start bit Nice Flo
instance->decoder.parser_step = NiceFloDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (subghz_protocol_nice_flo_const.te_short * 4)) {
instance->decoder.parser_step = NiceFloDecoderStepFoundStartBit;
if(instance->decoder.decode_count_bit >=
subghz_protocol_nice_flo_const.min_count_bit_for_found) {
instance->generic.serial = 0x0;
instance->generic.btn = 0x0;
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
break;
}
instance->decoder.te_last = duration;
instance->decoder.parser_step = NiceFloDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
break;
case NiceFloDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_nice_flo_const.te_short) <
subghz_protocol_nice_flo_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_long) <
subghz_protocol_nice_flo_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = NiceFloDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_nice_flo_const.te_long) <
subghz_protocol_nice_flo_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_nice_flo_const.te_short) <
subghz_protocol_nice_flo_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = NiceFloDecoderStepSaveDuration;
} else
instance->decoder.parser_step = NiceFloDecoderStepReset;
} else {
instance->decoder.parser_step = NiceFloDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_nice_flo_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_nice_flo_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_nice_flo_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if((instance->generic.data_count_bit !=
subghz_protocol_nice_flo_const.min_count_bit_for_found) &&
(instance->generic.data_count_bit !=
2 * subghz_protocol_nice_flo_const.min_count_bit_for_found)) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_nice_flo_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderNiceFlo* instance = context;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_lo,
code_found_reverse_lo);
}