flipperzero-firmware/lib/subghz/protocols/megacode.c
Skorpionm 4da6eba395
[FL-2706, FL-2709] SubGhz: checking saved key files for length (#1485)
* [FL-2706] SubGhz: checking saved key files for length
* SubGhz: fix RAW file upload error
* [FL-2709] GubGhz: RAW screen fix

Co-authored-by: あく <alleteam@gmail.com>
2022-08-01 21:24:21 +09:00

430 lines
15 KiB
C

#include "megacode.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
/*
* Help
* https://wiki.cuvoodoo.info/doku.php?id=megacode
* https://wiki.cuvoodoo.info/lib/exe/fetch.php?media=megacode:megacode_1.pdf
* https://fccid.io/EF4ACP00872/Test-Report/Megacode-2-112615.pdf
* https://github.com/aaronsp777/megadecoder
* https://github.com/rjmendez/Linear_keyfob
* https://github.com/j07rdi/Linear_MegaCode_Garage_Remote
*
*/
#define TAG "SubGhzProtocolMegaCode"
static const SubGhzBlockConst subghz_protocol_megacode_const = {
.te_short = 1000,
.te_long = 1000,
.te_delta = 200,
.min_count_bit_for_found = 24,
};
struct SubGhzProtocolDecoderMegaCode {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint8_t last_bit;
};
struct SubGhzProtocolEncoderMegaCode {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
MegaCodeDecoderStepReset = 0,
MegaCodeDecoderStepFoundStartBit,
MegaCodeDecoderStepSaveDuration,
MegaCodeDecoderStepCheckDuration,
} MegaCodeDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_megacode_decoder = {
.alloc = subghz_protocol_decoder_megacode_alloc,
.free = subghz_protocol_decoder_megacode_free,
.feed = subghz_protocol_decoder_megacode_feed,
.reset = subghz_protocol_decoder_megacode_reset,
.get_hash_data = subghz_protocol_decoder_megacode_get_hash_data,
.serialize = subghz_protocol_decoder_megacode_serialize,
.deserialize = subghz_protocol_decoder_megacode_deserialize,
.get_string = subghz_protocol_decoder_megacode_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_megacode_encoder = {
.alloc = subghz_protocol_encoder_megacode_alloc,
.free = subghz_protocol_encoder_megacode_free,
.deserialize = subghz_protocol_encoder_megacode_deserialize,
.stop = subghz_protocol_encoder_megacode_stop,
.yield = subghz_protocol_encoder_megacode_yield,
};
const SubGhzProtocol subghz_protocol_megacode = {
.name = SUBGHZ_PROTOCOL_MEGACODE_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_megacode_decoder,
.encoder = &subghz_protocol_megacode_encoder,
};
void* subghz_protocol_encoder_megacode_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderMegaCode* instance = malloc(sizeof(SubGhzProtocolEncoderMegaCode));
instance->base.protocol = &subghz_protocol_megacode;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 52;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_runing = false;
return instance;
}
void subghz_protocol_encoder_megacode_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderMegaCode* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderMegaCode instance
* @return true On success
*/
static bool subghz_protocol_encoder_megacode_get_upload(SubGhzProtocolEncoderMegaCode* instance) {
furi_assert(instance);
uint8_t last_bit = 0;
size_t size_upload = (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
/*
* Due to the nature of the protocol
*
* 00000 1
* _____|-| = 1 becomes
*
* 00 1 000
* __|-|___ = 0 becomes
*
* it's easier for us to generate an upload backwards
*/
size_t index = size_upload - 1;
// Send end level
instance->encoder.upload[index--] =
level_duration_make(true, (uint32_t)subghz_protocol_megacode_const.te_short);
if(bit_read(instance->generic.data, 0)) {
last_bit = 1;
} else {
last_bit = 0;
}
//Send key data
for(uint8_t i = 1; i < instance->generic.data_count_bit; i++) {
if(bit_read(instance->generic.data, i)) {
//if bit 1
instance->encoder.upload[index--] = level_duration_make(
false,
last_bit ? (uint32_t)subghz_protocol_megacode_const.te_short * 5 :
(uint32_t)subghz_protocol_megacode_const.te_short * 2);
last_bit = 1;
} else {
//if bit 0
instance->encoder.upload[index--] = level_duration_make(
false,
last_bit ? (uint32_t)subghz_protocol_megacode_const.te_short * 8 :
(uint32_t)subghz_protocol_megacode_const.te_short * 5);
last_bit = 0;
}
instance->encoder.upload[index--] =
level_duration_make(true, (uint32_t)subghz_protocol_megacode_const.te_short);
}
//Send PT_GUARD
if(bit_read(instance->generic.data, 0)) {
//if end bit 1
instance->encoder.upload[index] =
level_duration_make(false, (uint32_t)subghz_protocol_megacode_const.te_short * 11);
} else {
//if end bit 1
instance->encoder.upload[index] =
level_duration_make(false, (uint32_t)subghz_protocol_megacode_const.te_short * 14);
}
return true;
}
bool subghz_protocol_encoder_megacode_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderMegaCode* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_megacode_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_megacode_get_upload(instance);
instance->encoder.is_runing = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_megacode_stop(void* context) {
SubGhzProtocolEncoderMegaCode* instance = context;
instance->encoder.is_runing = false;
}
LevelDuration subghz_protocol_encoder_megacode_yield(void* context) {
SubGhzProtocolEncoderMegaCode* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) {
instance->encoder.is_runing = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_megacode_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderMegaCode* instance = malloc(sizeof(SubGhzProtocolDecoderMegaCode));
instance->base.protocol = &subghz_protocol_megacode;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_megacode_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
free(instance);
}
void subghz_protocol_decoder_megacode_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
instance->decoder.parser_step = MegaCodeDecoderStepReset;
}
void subghz_protocol_decoder_megacode_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
switch(instance->decoder.parser_step) {
case MegaCodeDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_megacode_const.te_short * 13) <
subghz_protocol_megacode_const.te_delta * 17)) { //10..16ms
//Found header MegaCode
instance->decoder.parser_step = MegaCodeDecoderStepFoundStartBit;
}
break;
case MegaCodeDecoderStepFoundStartBit:
if(level && (DURATION_DIFF(duration, subghz_protocol_megacode_const.te_short) <
subghz_protocol_megacode_const.te_delta)) {
//Found start bit MegaCode
instance->decoder.parser_step = MegaCodeDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->last_bit = 1;
} else {
instance->decoder.parser_step = MegaCodeDecoderStepReset;
}
break;
case MegaCodeDecoderStepSaveDuration:
if(!level) { //save interval
if(duration >= (subghz_protocol_megacode_const.te_short * 10)) {
instance->decoder.parser_step = MegaCodeDecoderStepReset;
if(instance->decoder.decode_count_bit ==
subghz_protocol_megacode_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
break;
}
if(!instance->last_bit) {
instance->decoder.te_last = duration - subghz_protocol_megacode_const.te_short * 3;
} else {
instance->decoder.te_last = duration;
}
instance->decoder.parser_step = MegaCodeDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = MegaCodeDecoderStepReset;
}
break;
case MegaCodeDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(
instance->decoder.te_last, subghz_protocol_megacode_const.te_short * 5) <
subghz_protocol_megacode_const.te_delta * 5) &&
(DURATION_DIFF(duration, subghz_protocol_megacode_const.te_short) <
subghz_protocol_megacode_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->last_bit = 1;
instance->decoder.parser_step = MegaCodeDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(
instance->decoder.te_last, subghz_protocol_megacode_const.te_short * 2) <
subghz_protocol_megacode_const.te_delta * 2) &&
(DURATION_DIFF(duration, subghz_protocol_megacode_const.te_short) <
subghz_protocol_megacode_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->last_bit = 0;
instance->decoder.parser_step = MegaCodeDecoderStepSaveDuration;
} else
instance->decoder.parser_step = MegaCodeDecoderStepReset;
} else {
instance->decoder.parser_step = MegaCodeDecoderStepReset;
}
break;
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_megacode_check_remote_controller(SubGhzBlockGeneric* instance) {
/*
* Short: 1000 µs
* Long: 1000 µs
* Gap: 11000 .. 14000 µs
* A Linear Megacode transmission consists of 24 bit frames starting with
* the most significant bit and ending with the least. Each of the 24 bit
* frames is 6 milliseconds wide and always contains a single 1 millisecond
* pulse. A frame with more than 1 pulse or a frame with no pulse is invalid
* and a receiver should reset and begin watching for another start bit.
* Start bit is always 1.
*
*
* Example (I created with my own remote):
* Remote “A” has the code “17316”, a Facility Code of “3”, and a single button.
* Start bit (S) = 1
* Facility Code 3 (F) = 0011
* Remote Code (Key) 17316 = 43A4 = 0100001110100100
* Button (Btn) 1 = 001
* S F Key Btn
* Result = 1|0011|0100001110100100|001
*
* 00000 1
* _____|-| = 1 becomes
*
* 00 1 000
* __|-|___ = 0 becomes
*
* The device needs to transmit with a 9000 µs gap between retransmissions:
* 000001 001000 001000 000001 000001 001000 000001 001000 001000 001000 001000 000001
* 000001 000001 001000 000001 001000 001000 000001 001000 001000 001000 001000 000001
* wait 9000 µs
* 000001 001000 001000 000001 000001 001000 000001 001000 001000 001000 001000 000001
* 000001 000001 001000 000001 001000 001000 000001 001000 001000 001000 001000 000001
*
*/
if((instance->data >> 23) == 1) {
instance->serial = (instance->data >> 3) & 0xFFFF;
instance->btn = instance->data & 0b111;
instance->cnt = (instance->data >> 19) & 0b1111;
} else {
instance->serial = 0;
instance->btn = 0;
instance->cnt = 0;
}
}
uint8_t subghz_protocol_decoder_megacode_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_megacode_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_megacode_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_megacode_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_megacode_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderMegaCode* instance = context;
subghz_protocol_megacode_check_remote_controller(&instance->generic);
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%06lX\r\n"
"Sn:0x%04lX - %d\r\n"
"Facility:%X Btn:%X\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)instance->generic.data,
instance->generic.serial,
instance->generic.serial,
instance->generic.cnt,
instance->generic.btn);
}