flipperzero-firmware/lib/subghz/protocols/subghz_protocol_came_atomo.c
Skorpionm 4418e73b26
[FL-1912, FL-1939] Sub-GHz frequency analyzer and add new protocol (#746)
* ToolBox: add manchester-decoder and manchester-encoder
* SubGhz: add new FM config cc1101
* Subghz: add protocol Kia
* SubGhz: fix receiving the last packet Nero Radio
* SubGhz: app protocol CAME Twin (TW2EE/TW4EE)
* SubGhz: add protocol CAME Atomo (AT03EV/ AT04EV)
* F7: sync with F6
* SubGhz: add frequency analyzer
* SubGhz: remove space from file name 
* SubGhz: frequency analyzer add filter and fix view
* [FL-1939] GubGhz: Frequency analyzer redesign
* SubGhz: fix incorrect subghz api call sequence in frequency analyzer worker

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2021-10-10 17:35:10 +03:00

232 lines
8.9 KiB
C

#include "subghz_protocol_came_atomo.h"
#include "subghz_protocol_common.h"
#include <lib/toolbox/manchester-decoder.h>
struct SubGhzProtocolCameAtomo {
SubGhzProtocolCommon common;
ManchesterState manchester_saved_state;
};
typedef enum {
CameAtomoDecoderStepReset = 0,
CameAtomoDecoderStepDecoderData,
} CameAtomoDecoderStep;
SubGhzProtocolCameAtomo* subghz_protocol_came_atomo_alloc() {
SubGhzProtocolCameAtomo* instance = furi_alloc(sizeof(SubGhzProtocolCameAtomo));
instance->common.name = "CAME Atomo";
instance->common.code_min_count_bit_for_found = 62;
instance->common.te_short = 600;
instance->common.te_long = 1200;
instance->common.te_delta = 250;
instance->common.type_protocol = SubGhzProtocolCommonTypeStatic;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_came_atomo_to_str;
// instance->common.to_save_string =
// (SubGhzProtocolCommonGetStrSave)subghz_protocol_came_atomo_to_save_str;
//instance->common.to_load_protocol_from_file =
// (SubGhzProtocolCommonLoadFromFile)subghz_protocol_came_atomo_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_came_atomo_to_load_protocol;
// instance->common.get_upload_protocol =
// (SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_came_atomo_send_key;
return instance;
}
void subghz_protocol_came_atomo_free(SubGhzProtocolCameAtomo* instance) {
furi_assert(instance);
free(instance);
}
/** Analysis of received data
*
* @param instance SubGhzProtocolCameAtomo instance
*/
void subghz_protocol_came_atomo_remote_controller(SubGhzProtocolCameAtomo* instance) {
}
void subghz_protocol_came_atomo_reset(SubGhzProtocolCameAtomo* instance) {
instance->common.parser_step = CameAtomoDecoderStepReset;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
void subghz_protocol_came_atomo_parse(
SubGhzProtocolCameAtomo* instance,
bool level,
uint32_t duration) {
ManchesterEvent event = ManchesterEventReset;
switch(instance->common.parser_step) {
case CameAtomoDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, instance->common.te_long * 65) <
instance->common.te_delta * 20)) {
//Found header CAME
instance->common.parser_step = CameAtomoDecoderStepDecoderData;
instance->common.code_found = 0;
instance->common.code_count_bit = 1;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->common.parser_step = CameAtomoDecoderStepReset;
}
break;
case CameAtomoDecoderStepDecoderData:
if(!level) {
if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
event = ManchesterEventShortLow;
} else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) {
event = ManchesterEventLongLow;
} else if(duration >= (instance->common.te_long * 2 + instance->common.te_delta)) {
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
// uint32_t code_found_hi = instance->common.code_last_found >> 32;
// uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
// uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
// instance->common.code_last_found, instance->common.code_last_count_bit);
// uint32_t code_found_reverse_hi = code_found_reverse >> 32;
// uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
// FURI_LOG_I(
// "ATOMO",
// "%08lX%08lX %08lX%08lX %d",
// code_found_hi,
// code_found_lo,
// code_found_reverse_hi,
// code_found_reverse_lo,
// instance->common.code_last_count_bit);
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 1;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->common.parser_step = CameAtomoDecoderStepReset;
}
} else {
if(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta) {
event = ManchesterEventShortHigh;
} else if(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta) {
event = ManchesterEventLongHigh;
} else {
instance->common.parser_step = CameAtomoDecoderStepReset;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->common.code_found = (instance->common.code_found << 1) | !data;
instance->common.code_count_bit++;
}
}
break;
}
}
void subghz_protocol_came_atomo_to_str(SubGhzProtocolCameAtomo* instance, string_t output) {
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%lX%08lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo);
}
// void subghz_protocol_came_atomo_to_save_str(SubGhzProtocolCameAtomo* instance, string_t output) {
// string_printf(
// output,
// "Protocol: %s\n"
// "Bit: %d\n"
// "Key: %08lX%08lX\r\n",
// instance->common.name,
// instance->common.code_last_count_bit,
// (uint32_t)(instance->common.code_last_found >> 32),
// (uint32_t)(instance->common.code_last_found & 0xFFFFFFFF));
// }
// bool subghz_protocol_came_atomo_to_load_protocol_from_file(
// FileWorker* file_worker,
// SubGhzProtocolCameAtomo* instance) {
// bool loaded = false;
// string_t temp_str;
// string_init(temp_str);
// int res = 0;
// int data = 0;
// do {
// // Read and parse bit data from 2nd line
// if(!file_worker_read_until(file_worker, temp_str, '\n')) {
// break;
// }
// res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
// if(res != 1) {
// break;
// }
// instance->common.code_last_count_bit = (uint8_t)data;
// // Read and parse key data from 3nd line
// if(!file_worker_read_until(file_worker, temp_str, '\n')) {
// break;
// }
// // strlen("Key: ") = 5
// string_right(temp_str, 5);
// uint8_t buf_key[8] = {0};
// if(!subghz_protocol_common_read_hex(temp_str, buf_key, 8)) {
// break;
// }
// for(uint8_t i = 0; i < 8; i++) {
// instance->common.code_last_found = instance->common.code_last_found << 8 | buf_key[i];
// }
// loaded = true;
// } while(0);
// string_clear(temp_str);
// subghz_protocol_came_atomo_remote_controller(instance);
// return loaded;
// }
void subghz_decoder_came_atomo_to_load_protocol(SubGhzProtocolCameAtomo* instance, void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
subghz_protocol_came_atomo_remote_controller(instance);
}