d31578508a
* digital signal: introduce digital signal * nfca: add nfca signal encoder * nfc: add mifare classic emulation scene * nfca: add classic emulation support to lib and hal * mifare classic: support basic read commands * nfc: add mifare classic menu scene * mifare classic: start parsing commands in emulation * mifare classic: add nested auth * nfc: fix errors * mifare classic: add encrypt function * nfc: fix mifare classic save * lib hex: add hex uint64_t ASCII parser * flipper format: add uint64 hex format support * nfc: add mifare classic key map * nfc: hide mifare classic keys on emulation * mifare classic: add NACK responce * nfc: add partial bytes support in transparent mode * nfc: mifare classic add shadow file support * digital signal: move arr buffer from BSS to heap * mifare classic: process access bits more careful * nfca: fix memory leack * nfc: format sources * mifare classic: cleun up Co-authored-by: あく <alleteam@gmail.com>
747 lines
25 KiB
C
747 lines
25 KiB
C
#include "mifare_classic.h"
|
|
#include "nfca.h"
|
|
#include "nfc_util.h"
|
|
#include <furi_hal_rtc.h>
|
|
|
|
// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
|
|
|
|
#define TAG "MfClassic"
|
|
|
|
#define MF_CLASSIC_AUTH_KEY_A_CMD (0x60U)
|
|
#define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
|
|
#define MF_CLASSIC_READ_SECT_CMD (0x30)
|
|
|
|
typedef enum {
|
|
MfClassicActionDataRead,
|
|
MfClassicActionDataWrite,
|
|
MfClassicActionDataInc,
|
|
MfClassicActionDataDec,
|
|
|
|
MfClassicActionKeyARead,
|
|
MfClassicActionKeyAWrite,
|
|
MfClassicActionKeyBRead,
|
|
MfClassicActionKeyBWrite,
|
|
MfClassicActionACRead,
|
|
MfClassicActionACWrite,
|
|
} MfClassicAction;
|
|
|
|
static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
|
|
furi_assert(sector < 40);
|
|
if(sector < 32) {
|
|
return sector * 4;
|
|
} else {
|
|
return 32 * 4 + (sector - 32) * 16;
|
|
}
|
|
}
|
|
|
|
static uint8_t mf_classic_get_sector_by_block(uint8_t block) {
|
|
if(block < 128) {
|
|
return (block | 0x03) / 4;
|
|
} else {
|
|
return 32 + ((block | 0xf) - 32 * 4) / 16;
|
|
}
|
|
}
|
|
|
|
static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
|
|
furi_assert(sector < 40);
|
|
return sector < 32 ? 4 : 16;
|
|
}
|
|
|
|
static uint8_t mf_classic_get_sector_trailer(uint8_t block) {
|
|
if(block < 128) {
|
|
return block | 0x03;
|
|
} else {
|
|
return block | 0x0f;
|
|
}
|
|
}
|
|
|
|
static bool mf_classic_is_sector_trailer(uint8_t block) {
|
|
return block == mf_classic_get_sector_trailer(block);
|
|
}
|
|
|
|
uint8_t mf_classic_get_total_sectors_num(MfClassicReader* reader) {
|
|
furi_assert(reader);
|
|
if(reader->type == MfClassicType1k) {
|
|
return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
|
|
} else if(reader->type == MfClassicType4k) {
|
|
return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint16_t mf_classic_get_total_block_num(MfClassicType type) {
|
|
if(type == MfClassicType1k) {
|
|
return 64;
|
|
} else if(type == MfClassicType4k) {
|
|
return 256;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static bool mf_classic_is_allowed_access_sector_trailer(
|
|
MfClassicEmulator* emulator,
|
|
uint8_t block_num,
|
|
MfClassicKey key,
|
|
MfClassicAction action) {
|
|
uint8_t* sector_trailer = emulator->data.block[block_num].value;
|
|
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
|
|
((sector_trailer[8] >> 7) & 0x01);
|
|
switch(action) {
|
|
case MfClassicActionKeyARead: {
|
|
return false;
|
|
}
|
|
case MfClassicActionKeyAWrite: {
|
|
return (
|
|
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
|
|
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
|
|
}
|
|
case MfClassicActionKeyBRead: {
|
|
return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
|
|
}
|
|
case MfClassicActionKeyBWrite: {
|
|
return (
|
|
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
|
|
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
|
|
}
|
|
case MfClassicActionACRead: {
|
|
return (
|
|
(key == MfClassicKeyA) ||
|
|
(key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
|
|
}
|
|
case MfClassicActionACWrite: {
|
|
return (
|
|
(key == MfClassicKeyA && (AC == 0x01)) ||
|
|
(key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool mf_classic_is_allowed_access_data_block(
|
|
MfClassicEmulator* emulator,
|
|
uint8_t block_num,
|
|
MfClassicKey key,
|
|
MfClassicAction action) {
|
|
uint8_t* sector_trailer = emulator->data.block[mf_classic_get_sector_trailer(block_num)].value;
|
|
|
|
uint8_t sector_block;
|
|
if(block_num <= 128) {
|
|
sector_block = block_num & 0x03;
|
|
} else {
|
|
sector_block = (block_num & 0x0f) / 5;
|
|
}
|
|
|
|
uint8_t AC;
|
|
switch(sector_block) {
|
|
case 0x00: {
|
|
AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
|
|
((sector_trailer[8] >> 4) & 0x01);
|
|
break;
|
|
}
|
|
case 0x01: {
|
|
AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
|
|
((sector_trailer[8] >> 5) & 0x01);
|
|
break;
|
|
}
|
|
case 0x02: {
|
|
AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
|
|
((sector_trailer[8] >> 6) & 0x01);
|
|
break;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
switch(action) {
|
|
case MfClassicActionDataRead: {
|
|
return (
|
|
(key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
|
|
(key == MfClassicKeyB && !(AC == 0x07)));
|
|
}
|
|
case MfClassicActionDataWrite: {
|
|
return (
|
|
(key == MfClassicKeyA && (AC == 0x00)) ||
|
|
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
|
|
}
|
|
case MfClassicActionDataInc: {
|
|
return (
|
|
(key == MfClassicKeyA && (AC == 0x00)) ||
|
|
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
|
|
}
|
|
case MfClassicActionDataDec: {
|
|
return (
|
|
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
|
|
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool mf_classic_is_allowed_access(
|
|
MfClassicEmulator* emulator,
|
|
uint8_t block_num,
|
|
MfClassicKey key,
|
|
MfClassicAction action) {
|
|
if(mf_classic_is_sector_trailer(block_num)) {
|
|
return mf_classic_is_allowed_access_sector_trailer(emulator, block_num, key, action);
|
|
} else {
|
|
return mf_classic_is_allowed_access_data_block(emulator, block_num, key, action);
|
|
}
|
|
}
|
|
|
|
bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
|
|
UNUSED(ATQA1);
|
|
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08)) {
|
|
return true;
|
|
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool mf_classic_get_type(
|
|
uint8_t* uid,
|
|
uint8_t uid_len,
|
|
uint8_t ATQA0,
|
|
uint8_t ATQA1,
|
|
uint8_t SAK,
|
|
MfClassicReader* reader) {
|
|
UNUSED(ATQA1);
|
|
furi_assert(uid);
|
|
furi_assert(reader);
|
|
memset(reader, 0, sizeof(MfClassicReader));
|
|
|
|
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08)) {
|
|
reader->type = MfClassicType1k;
|
|
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
|
|
reader->type = MfClassicType4k;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
uint8_t* cuid_start = uid;
|
|
if(uid_len == 7) {
|
|
cuid_start = &uid[3];
|
|
}
|
|
reader->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
|
|
(cuid_start[3]);
|
|
|
|
return true;
|
|
}
|
|
|
|
void mf_classic_reader_add_sector(
|
|
MfClassicReader* reader,
|
|
uint8_t sector,
|
|
uint64_t key_a,
|
|
uint64_t key_b) {
|
|
furi_assert(reader);
|
|
furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
|
|
furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));
|
|
|
|
if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX - 1) {
|
|
reader->sector_reader[reader->sectors_to_read].key_a = key_a;
|
|
reader->sector_reader[reader->sectors_to_read].key_b = key_b;
|
|
reader->sector_reader[reader->sectors_to_read].sector_num = sector;
|
|
reader->sectors_to_read++;
|
|
}
|
|
}
|
|
|
|
void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint32_t cuid, uint8_t sector) {
|
|
furi_assert(auth_ctx);
|
|
auth_ctx->cuid = cuid;
|
|
auth_ctx->sector = sector;
|
|
auth_ctx->key_a = MF_CLASSIC_NO_KEY;
|
|
auth_ctx->key_b = MF_CLASSIC_NO_KEY;
|
|
}
|
|
|
|
static bool mf_classic_auth(
|
|
FuriHalNfcTxRxContext* tx_rx,
|
|
uint32_t cuid,
|
|
uint32_t block,
|
|
uint64_t key,
|
|
MfClassicKey key_type,
|
|
Crypto1* crypto) {
|
|
bool auth_success = false;
|
|
memset(tx_rx, 0, sizeof(FuriHalNfcTxRxContext));
|
|
|
|
do {
|
|
if(key_type == MfClassicKeyA) {
|
|
tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
|
|
} else {
|
|
tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
|
|
}
|
|
tx_rx->tx_data[1] = block;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
|
|
tx_rx->tx_bits = 2 * 8;
|
|
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
|
|
|
|
uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
|
|
crypto1_init(crypto, key);
|
|
crypto1_word(crypto, nt ^ cuid, 0);
|
|
uint8_t nr[4] = {};
|
|
nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
|
|
for(uint8_t i = 0; i < 4; i++) {
|
|
tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
|
|
tx_rx->tx_parity[0] |=
|
|
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
|
|
}
|
|
nt = prng_successor(nt, 32);
|
|
for(uint8_t i = 4; i < 8; i++) {
|
|
nt = prng_successor(nt, 8);
|
|
tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
|
|
tx_rx->tx_parity[0] |=
|
|
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
|
|
<< (7 - i));
|
|
}
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
|
|
tx_rx->tx_bits = 8 * 8;
|
|
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
|
|
if(tx_rx->rx_bits == 32) {
|
|
crypto1_word(crypto, 0, 0);
|
|
auth_success = true;
|
|
}
|
|
} while(false);
|
|
|
|
return auth_success;
|
|
}
|
|
|
|
bool mf_classic_auth_attempt(
|
|
FuriHalNfcTxRxContext* tx_rx,
|
|
MfClassicAuthContext* auth_ctx,
|
|
uint64_t key) {
|
|
furi_assert(tx_rx);
|
|
furi_assert(auth_ctx);
|
|
bool found_key = false;
|
|
bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
|
|
(auth_ctx->key_b == MF_CLASSIC_NO_KEY);
|
|
|
|
Crypto1 crypto;
|
|
if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
|
|
// Try AUTH with key A
|
|
if(mf_classic_auth(
|
|
tx_rx,
|
|
auth_ctx->cuid,
|
|
mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
|
|
key,
|
|
MfClassicKeyA,
|
|
&crypto)) {
|
|
auth_ctx->key_a = key;
|
|
found_key = true;
|
|
}
|
|
}
|
|
|
|
if(need_halt) {
|
|
furi_hal_nfc_sleep();
|
|
furi_hal_nfc_activate_nfca(300, &auth_ctx->cuid);
|
|
}
|
|
|
|
if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
|
|
// Try AUTH with key B
|
|
if(mf_classic_auth(
|
|
tx_rx,
|
|
auth_ctx->cuid,
|
|
mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
|
|
key,
|
|
MfClassicKeyB,
|
|
&crypto)) {
|
|
auth_ctx->key_b = key;
|
|
found_key = true;
|
|
}
|
|
}
|
|
|
|
return found_key;
|
|
}
|
|
|
|
bool mf_classic_read_block(
|
|
FuriHalNfcTxRxContext* tx_rx,
|
|
Crypto1* crypto,
|
|
uint8_t block_num,
|
|
MfClassicBlock* block) {
|
|
furi_assert(tx_rx);
|
|
furi_assert(crypto);
|
|
furi_assert(block);
|
|
|
|
bool read_block_success = false;
|
|
uint8_t plain_cmd[4] = {MF_CLASSIC_READ_SECT_CMD, block_num, 0x00, 0x00};
|
|
nfca_append_crc16(plain_cmd, 2);
|
|
memset(tx_rx, 0, sizeof(FuriHalNfcTxRxContext));
|
|
|
|
for(uint8_t i = 0; i < 4; i++) {
|
|
tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ plain_cmd[i];
|
|
tx_rx->tx_parity[0] |=
|
|
((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_cmd[i])) & 0x01) << (7 - i);
|
|
}
|
|
tx_rx->tx_bits = 4 * 9;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
|
|
|
|
if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
|
|
if(tx_rx->rx_bits == 8 * 18) {
|
|
for(uint8_t i = 0; i < 18; i++) {
|
|
block->value[i] = crypto1_byte(crypto, 0, 0) ^ tx_rx->rx_data[i];
|
|
}
|
|
read_block_success = true;
|
|
}
|
|
}
|
|
return read_block_success;
|
|
}
|
|
|
|
bool mf_classic_read_sector(
|
|
FuriHalNfcTxRxContext* tx_rx,
|
|
Crypto1* crypto,
|
|
MfClassicSectorReader* sector_reader,
|
|
MfClassicSector* sector) {
|
|
furi_assert(tx_rx);
|
|
furi_assert(sector_reader);
|
|
furi_assert(sector);
|
|
|
|
uint32_t cuid = 0;
|
|
uint64_t key;
|
|
MfClassicKey key_type;
|
|
uint8_t first_block;
|
|
bool sector_read = false;
|
|
|
|
furi_hal_nfc_sleep();
|
|
do {
|
|
// Activate card
|
|
if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
|
|
first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
|
|
if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
|
|
key = sector_reader->key_a;
|
|
key_type = MfClassicKeyA;
|
|
} else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
|
|
key = sector_reader->key_b;
|
|
key_type = MfClassicKeyB;
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
// Auth to first block in sector
|
|
if(!mf_classic_auth(tx_rx, cuid, first_block, key, key_type, crypto)) break;
|
|
sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);
|
|
|
|
// Read blocks
|
|
for(uint8_t i = 0; i < sector->total_blocks; i++) {
|
|
mf_classic_read_block(tx_rx, crypto, first_block + i, §or->block[i]);
|
|
}
|
|
// Save sector keys in last block
|
|
if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
|
|
nfc_util_num2bytes(
|
|
sector_reader->key_a, 6, §or->block[sector->total_blocks - 1].value[0]);
|
|
}
|
|
if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
|
|
nfc_util_num2bytes(
|
|
sector_reader->key_b, 6, §or->block[sector->total_blocks - 1].value[10]);
|
|
}
|
|
|
|
sector_read = true;
|
|
} while(false);
|
|
|
|
return sector_read;
|
|
}
|
|
|
|
uint8_t mf_classic_read_card(
|
|
FuriHalNfcTxRxContext* tx_rx,
|
|
MfClassicReader* reader,
|
|
MfClassicData* data) {
|
|
furi_assert(tx_rx);
|
|
furi_assert(reader);
|
|
furi_assert(data);
|
|
|
|
uint8_t sectors_read = 0;
|
|
data->type = reader->type;
|
|
data->key_a_mask = 0;
|
|
data->key_b_mask = 0;
|
|
MfClassicSector temp_sector = {};
|
|
for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
|
|
if(mf_classic_read_sector(
|
|
tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
|
|
uint8_t first_block =
|
|
mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
|
|
for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
|
|
data->block[first_block + j] = temp_sector.block[j];
|
|
}
|
|
if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
|
|
data->key_a_mask |= 1 << reader->sector_reader[i].sector_num;
|
|
}
|
|
if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
|
|
data->key_b_mask |= 1 << reader->sector_reader[i].sector_num;
|
|
}
|
|
sectors_read++;
|
|
}
|
|
}
|
|
|
|
return sectors_read;
|
|
}
|
|
|
|
void mf_crypto1_decrypt(
|
|
Crypto1* crypto,
|
|
uint8_t* encrypted_data,
|
|
uint16_t encrypted_data_bits,
|
|
uint8_t* decrypted_data) {
|
|
if(encrypted_data_bits < 8) {
|
|
uint8_t decrypted_byte = 0;
|
|
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 0)) << 0;
|
|
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 1)) << 1;
|
|
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 2)) << 2;
|
|
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 3)) << 3;
|
|
decrypted_data[0] = decrypted_byte;
|
|
} else {
|
|
for(size_t i = 0; i < encrypted_data_bits / 8; i++) {
|
|
decrypted_data[i] = crypto1_byte(crypto, 0, 0) ^ encrypted_data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void mf_crypto1_encrypt(
|
|
Crypto1* crypto,
|
|
uint8_t* keystream,
|
|
uint8_t* plain_data,
|
|
uint16_t plain_data_bits,
|
|
uint8_t* encrypted_data,
|
|
uint8_t* encrypted_parity) {
|
|
if(plain_data_bits < 8) {
|
|
encrypted_data[0] = 0;
|
|
for(size_t i = 0; i < plain_data_bits; i++) {
|
|
encrypted_data[0] |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(plain_data[0], i)) << i;
|
|
}
|
|
} else {
|
|
memset(encrypted_parity, 0, plain_data_bits / 8 + 1);
|
|
for(uint8_t i = 0; i < plain_data_bits / 8; i++) {
|
|
encrypted_data[i] = crypto1_byte(crypto, keystream ? keystream[i] : 0, 0) ^
|
|
plain_data[i];
|
|
encrypted_parity[i / 8] |=
|
|
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_data[i])) & 0x01)
|
|
<< (7 - (i & 0x0007)));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
|
|
furi_assert(emulator);
|
|
furi_assert(tx_rx);
|
|
bool command_processed = false;
|
|
bool is_encrypted = false;
|
|
uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
|
|
MfClassicKey access_key = MfClassicKeyA;
|
|
|
|
// Read command
|
|
while(!command_processed) {
|
|
if(!is_encrypted) {
|
|
// Read first frame
|
|
tx_rx->tx_bits = 0;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
|
|
}
|
|
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
|
|
FURI_LOG_D(
|
|
TAG, "Error in tx rx. Tx :%d bits, Rx: %d bits", tx_rx->tx_bits, tx_rx->rx_bits);
|
|
break;
|
|
}
|
|
if(!is_encrypted) {
|
|
memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
|
|
} else {
|
|
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
|
|
}
|
|
// TODO Check crc
|
|
|
|
if(plain_data[0] == 0x50 && plain_data[1] == 00) {
|
|
FURI_LOG_T(TAG, "Halt received");
|
|
command_processed = true;
|
|
break;
|
|
} else if(plain_data[0] == 0x60 || plain_data[0] == 0x61) {
|
|
uint8_t block = plain_data[1];
|
|
uint64_t key = 0;
|
|
uint8_t sector_trailer_block = mf_classic_get_sector_trailer(block);
|
|
MfClassicSectorTrailer* sector_trailer =
|
|
(MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
|
|
if(plain_data[0] == 0x61) {
|
|
key = nfc_util_bytes2num(sector_trailer->key_b, 6);
|
|
access_key = MfClassicKeyA;
|
|
} else {
|
|
key = nfc_util_bytes2num(sector_trailer->key_a, 6);
|
|
access_key = MfClassicKeyB;
|
|
}
|
|
|
|
uint32_t nonce = prng_successor(DWT->CYCCNT, 32);
|
|
uint8_t nt[4];
|
|
uint8_t nt_keystream[4];
|
|
nfc_util_num2bytes(nonce, 4, nt);
|
|
nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
|
|
crypto1_init(&emulator->crypto, key);
|
|
if(!is_encrypted) {
|
|
crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
|
|
memcpy(tx_rx->tx_data, nt, sizeof(nt));
|
|
tx_rx->tx_bits = sizeof(nt) * 8;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxRaw;
|
|
} else {
|
|
mf_crypto1_encrypt(
|
|
&emulator->crypto,
|
|
nt_keystream,
|
|
nt,
|
|
sizeof(nt) * 8,
|
|
tx_rx->tx_data,
|
|
tx_rx->tx_parity);
|
|
tx_rx->tx_bits = sizeof(nt) * 8;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
|
|
}
|
|
if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
|
|
FURI_LOG_E(TAG, "Error in NT exchange");
|
|
command_processed = true;
|
|
break;
|
|
}
|
|
|
|
if(tx_rx->rx_bits != 64) {
|
|
FURI_LOG_W(TAG, "Incorrect nr + ar");
|
|
command_processed = true;
|
|
break;
|
|
}
|
|
|
|
// Check if we store valid key
|
|
if(access_key == MfClassicKeyA) {
|
|
if(FURI_BIT(emulator->data.key_a_mask, mf_classic_get_sector_by_block(block)) ==
|
|
0) {
|
|
FURI_LOG_D(TAG, "Unsupported sector key A for block %d", sector_trailer_block);
|
|
break;
|
|
}
|
|
} else if(access_key == MfClassicKeyB) {
|
|
if(FURI_BIT(emulator->data.key_b_mask, mf_classic_get_sector_by_block(block)) ==
|
|
0) {
|
|
FURI_LOG_D(TAG, "Unsupported sector key B for block %d", sector_trailer_block);
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
|
|
uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);
|
|
crypto1_word(&emulator->crypto, nr, 1);
|
|
uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
|
|
if(cardRr != prng_successor(nonce, 64)) {
|
|
FURI_LOG_T(TAG, "Wrong AUTH! %08X != %08X", cardRr, prng_successor(nonce, 64));
|
|
// Don't send NACK, as tag don't send it
|
|
command_processed = true;
|
|
break;
|
|
}
|
|
|
|
uint32_t ans = prng_successor(nonce, 96);
|
|
uint8_t responce[4] = {};
|
|
nfc_util_num2bytes(ans, 4, responce);
|
|
mf_crypto1_encrypt(
|
|
&emulator->crypto,
|
|
NULL,
|
|
responce,
|
|
sizeof(responce) * 8,
|
|
tx_rx->tx_data,
|
|
tx_rx->tx_parity);
|
|
tx_rx->tx_bits = sizeof(responce) * 8;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
|
|
|
|
is_encrypted = true;
|
|
} else if(is_encrypted && plain_data[0] == 0x30) {
|
|
uint8_t block = plain_data[1];
|
|
uint8_t block_data[18] = {};
|
|
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
|
|
if(mf_classic_is_sector_trailer(block)) {
|
|
if(!mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionKeyARead)) {
|
|
memset(block_data, 0, 6);
|
|
}
|
|
if(!mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionKeyBRead)) {
|
|
memset(&block_data[10], 0, 6);
|
|
}
|
|
if(!mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionACRead)) {
|
|
memset(&block_data[6], 0, 4);
|
|
}
|
|
} else {
|
|
if(!mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionDataRead)) {
|
|
memset(block_data, 0, 16);
|
|
}
|
|
}
|
|
nfca_append_crc16(block_data, 16);
|
|
|
|
mf_crypto1_encrypt(
|
|
&emulator->crypto,
|
|
NULL,
|
|
block_data,
|
|
sizeof(block_data) * 8,
|
|
tx_rx->tx_data,
|
|
tx_rx->tx_parity);
|
|
tx_rx->tx_bits = 18 * 8;
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
|
|
} else if(is_encrypted && plain_data[0] == 0xA0) {
|
|
uint8_t block = plain_data[1];
|
|
if(block > mf_classic_get_total_block_num(emulator->data.type)) {
|
|
break;
|
|
}
|
|
// Send ACK
|
|
uint8_t ack = 0x0A;
|
|
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
|
|
tx_rx->tx_bits = 4;
|
|
|
|
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
|
|
if(tx_rx->rx_bits != 18 * 8) break;
|
|
|
|
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
|
|
uint8_t block_data[16] = {};
|
|
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
|
|
if(mf_classic_is_sector_trailer(block)) {
|
|
if(mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionKeyAWrite)) {
|
|
memcpy(block_data, plain_data, 6);
|
|
}
|
|
if(mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionKeyBWrite)) {
|
|
memcpy(&block_data[10], &plain_data[10], 6);
|
|
}
|
|
if(mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionACWrite)) {
|
|
memcpy(&block_data[6], &plain_data[6], 4);
|
|
}
|
|
} else {
|
|
if(mf_classic_is_allowed_access(
|
|
emulator, block, access_key, MfClassicActionDataWrite)) {
|
|
memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
|
|
}
|
|
}
|
|
if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE)) {
|
|
memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
|
|
emulator->data_changed = true;
|
|
}
|
|
// Send ACK
|
|
ack = 0x0A;
|
|
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
|
|
tx_rx->tx_bits = 4;
|
|
} else {
|
|
// Unknown command
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(!command_processed) {
|
|
// Send NACK
|
|
uint8_t nack = 0x04;
|
|
if(is_encrypted) {
|
|
mf_crypto1_encrypt(
|
|
&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
|
|
} else {
|
|
tx_rx->tx_data[0] = nack;
|
|
}
|
|
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
|
|
tx_rx->tx_bits = 4;
|
|
furi_hal_nfc_tx_rx(tx_rx, 300);
|
|
}
|
|
|
|
return true;
|
|
}
|