flipperzero-firmware/applications/tests/irda_decoder_encoder/irda_decoder_encoder_test.c
Albert Kharisov 9f6e14d005
[FL-1398] IRDA: Implement timings encoder, add RC-6 (#570)
* Add RC-6 protocol
* Implement timings Encoder
* Remove Unit-tests from build
2021-07-08 21:20:13 +03:00

225 lines
7.8 KiB
C

#include <furi.h>
#include "../minunit.h"
#include "irda.h"
#include "irda_common_i.h"
#include "test_data/irda_nec_test_data.srcdata"
#include "test_data/irda_necext_test_data.srcdata"
#include "test_data/irda_samsung_test_data.srcdata"
#include "test_data/irda_rc6_test_data.srcdata"
#define RUN_ENCODER(data, expected) \
run_encoder((data), COUNT_OF(data), (expected), COUNT_OF(expected))
#define RUN_DECODER(data, expected) \
run_decoder((data), COUNT_OF(data), (expected), COUNT_OF(expected))
static IrdaDecoderHandler* decoder_handler;
static IrdaEncoderHandler* encoder_handler;
static void test_setup(void) {
decoder_handler = irda_alloc_decoder();
encoder_handler = irda_alloc_encoder();
}
static void test_teardown(void) {
irda_free_decoder(decoder_handler);
irda_free_encoder(encoder_handler);
}
static void compare_message_results(
const IrdaMessage* message_decoded,
const IrdaMessage* message_expected) {
mu_check(message_decoded->protocol == message_expected->protocol);
mu_check(message_decoded->command == message_expected->command);
mu_check(message_decoded->address == message_expected->address);
mu_check(message_decoded->repeat == message_expected->repeat);
}
static void
run_encoder_fill_array(IrdaEncoderHandler* handler, uint32_t* timings, uint32_t* timings_len) {
uint32_t duration = 0;
bool level = false; // start from space
bool level_read;
IrdaStatus status = IrdaStatusError;
int i = 0;
while(1) {
status = irda_encode(handler, &duration, &level_read);
if(level_read != level) {
level = level_read;
++i;
}
timings[i] += duration;
furi_assert((status == IrdaStatusOk) || (status == IrdaStatusDone));
if(status == IrdaStatusDone) break;
furi_assert(i < *timings_len);
}
*timings_len = i + 1;
}
// messages in input array for encoder should have one protocol
static void run_encoder(
const IrdaMessage input_messages[],
uint32_t input_messages_len,
const uint32_t expected_timings[],
uint32_t expected_timings_len) {
uint32_t* timings = 0;
uint32_t timings_len = 0;
uint32_t j = 0;
for(uint32_t message_counter = 0; message_counter < input_messages_len; ++message_counter) {
const IrdaMessage* message = &input_messages[message_counter];
if(!message->repeat) {
irda_reset_encoder(encoder_handler, message);
}
timings_len = 200;
timings = furi_alloc(sizeof(uint32_t) * timings_len);
run_encoder_fill_array(encoder_handler, timings, &timings_len);
furi_assert(timings_len <= 200);
for(int i = 0; i < timings_len; ++i, ++j) {
mu_check(MATCH_BIT_TIMING(timings[i], expected_timings[j], 120));
mu_assert(j < expected_timings_len, "encoded more timings than expected");
}
free(timings);
}
mu_assert(j == expected_timings_len, "encoded less timings than expected");
}
static void run_encoder_decoder(const IrdaMessage input_messages[], uint32_t input_messages_len) {
uint32_t* timings = 0;
uint32_t timings_len = 0;
bool level = false;
for(uint32_t message_counter = 0; message_counter < input_messages_len; ++message_counter) {
const IrdaMessage* message_encoded = &input_messages[message_counter];
if(!message_encoded->repeat) {
irda_reset_encoder(encoder_handler, message_encoded);
level = false;
}
timings_len = 200;
timings = furi_alloc(sizeof(uint32_t) * timings_len);
run_encoder_fill_array(encoder_handler, timings, &timings_len);
furi_assert(timings_len <= 200);
const IrdaMessage* message_decoded = 0;
for(int i = 0; i < timings_len; ++i) {
message_decoded = irda_decode(decoder_handler, level, timings[i]);
if(i < timings_len - 1)
mu_check(!message_decoded);
else
mu_check(message_decoded);
level = !level;
}
if(message_decoded) {
compare_message_results(message_decoded, message_encoded);
} else {
mu_check(0);
}
free(timings);
}
}
static void run_decoder(
const uint32_t* input_delays,
uint32_t input_delays_len,
const IrdaMessage* message_expected,
uint32_t message_expected_len) {
const IrdaMessage* message_decoded = 0;
bool level = 0;
uint32_t message_counter = 0;
for(uint32_t i = 0; i < input_delays_len; ++i) {
message_decoded = irda_decode(decoder_handler, level, input_delays[i]);
if(message_decoded) {
mu_assert(message_counter < message_expected_len, "decoded more than expected");
if(message_counter >= message_expected_len) break;
compare_message_results(message_decoded, &message_expected[message_counter]);
++message_counter;
}
level = !level;
}
mu_assert(message_counter == message_expected_len, "decoded less than expected");
}
MU_TEST(test_decoder_samsung32) {
RUN_DECODER(test_decoder_samsung32_input1, test_decoder_samsung32_expected1);
}
MU_TEST(test_mix) {
RUN_DECODER(test_decoder_necext_input1, test_decoder_necext_expected1);
// can use encoder data for decoding, but can't do opposite
RUN_DECODER(test_encoder_rc6_expected1, test_encoder_rc6_input1);
RUN_DECODER(test_decoder_samsung32_input1, test_decoder_samsung32_expected1);
RUN_DECODER(test_decoder_rc6_input1, test_decoder_rc6_expected1);
RUN_DECODER(test_decoder_samsung32_input1, test_decoder_samsung32_expected1);
RUN_DECODER(test_decoder_necext_input1, test_decoder_necext_expected1);
RUN_DECODER(test_decoder_nec_input2, test_decoder_nec_expected2);
RUN_DECODER(test_decoder_rc6_input1, test_decoder_rc6_expected1);
RUN_DECODER(test_decoder_necext_input1, test_decoder_necext_expected1);
RUN_DECODER(test_decoder_samsung32_input1, test_decoder_samsung32_expected1);
}
MU_TEST(test_decoder_nec1) {
RUN_DECODER(test_decoder_nec_input1, test_decoder_nec_expected1);
}
MU_TEST(test_decoder_nec2) {
RUN_DECODER(test_decoder_nec_input2, test_decoder_nec_expected2);
}
MU_TEST(test_decoder_unexpected_end_in_sequence) {
// test_decoder_nec_input1 and test_decoder_nec_input2 shuts unexpected
RUN_DECODER(test_decoder_nec_input1, test_decoder_nec_expected1);
RUN_DECODER(test_decoder_nec_input1, test_decoder_nec_expected1);
RUN_DECODER(test_decoder_nec_input2, test_decoder_nec_expected2);
RUN_DECODER(test_decoder_nec_input2, test_decoder_nec_expected2);
}
MU_TEST(test_decoder_necext1) {
RUN_DECODER(test_decoder_necext_input1, test_decoder_necext_expected1);
RUN_DECODER(test_decoder_necext_input1, test_decoder_necext_expected1);
}
MU_TEST(test_decoder_rc6) {
RUN_DECODER(test_decoder_rc6_input1, test_decoder_rc6_expected1);
}
MU_TEST(test_encoder_rc6) {
RUN_ENCODER(test_encoder_rc6_input1, test_encoder_rc6_expected1);
}
MU_TEST(test_encoder_decoder_all) {
run_encoder_decoder(test_nec_all, COUNT_OF(test_nec_all));
run_encoder_decoder(test_necext_all, COUNT_OF(test_necext_all));
run_encoder_decoder(test_samsung32_all, COUNT_OF(test_samsung32_all));
run_encoder_decoder(test_rc6_all, COUNT_OF(test_rc6_all));
}
MU_TEST_SUITE(test_irda_decoder_encoder) {
MU_SUITE_CONFIGURE(&test_setup, &test_teardown);
MU_RUN_TEST(test_encoder_decoder_all);
MU_RUN_TEST(test_decoder_unexpected_end_in_sequence);
MU_RUN_TEST(test_decoder_nec1);
MU_RUN_TEST(test_decoder_nec2);
MU_RUN_TEST(test_decoder_samsung32);
MU_RUN_TEST(test_decoder_necext1);
MU_RUN_TEST(test_mix);
MU_RUN_TEST(test_decoder_rc6);
MU_RUN_TEST(test_encoder_rc6);
}
int run_minunit_test_irda_decoder_encoder() {
MU_RUN_SUITE(test_irda_decoder_encoder);
MU_REPORT();
return MU_EXIT_CODE;
}