flipperzero-firmware/lib/infrared/encoder_decoder/nec/infrared_decoder_nec.c
Georgii Surkov 75e9de12b0
[FL-3078] Per protocol signal repeat count (#2293)
* Better Infrared protocol file structure
* Rename InfraredProtocolSpec to InfraredProtocolVariant
* Slightly better names
* Add repeat count field to protocol variant description
* Repeat the signal the appropriate number of times when brute-forcing
* Repeat the signal the appropriate number of times when sending via worker
* Better signal count logic in infrared_transmit
* Better variable names
* Convert some raw signals to messages in tv.ir

Co-authored-by: あく <alleteam@gmail.com>
2023-01-13 16:50:19 +03:00

98 lines
3.7 KiB
C

#include "infrared_protocol_nec_i.h"
#include <core/check.h>
InfraredMessage* infrared_decoder_nec_check_ready(void* ctx) {
return infrared_common_decoder_check_ready(ctx);
}
bool infrared_decoder_nec_interpret(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
if(decoder->databit_cnt == 32) {
uint8_t address = decoder->data[0];
uint8_t address_inverse = decoder->data[1];
uint8_t command = decoder->data[2];
uint8_t command_inverse = decoder->data[3];
uint8_t inverse_command_inverse = (uint8_t)~command_inverse;
uint8_t inverse_address_inverse = (uint8_t)~address_inverse;
if((command == inverse_command_inverse) && (address == inverse_address_inverse)) {
decoder->message.protocol = InfraredProtocolNEC;
decoder->message.address = address;
decoder->message.command = command;
decoder->message.repeat = false;
result = true;
} else {
decoder->message.protocol = InfraredProtocolNECext;
decoder->message.address = decoder->data[0] | (decoder->data[1] << 8);
decoder->message.command = decoder->data[2] | (decoder->data[3] << 8);
decoder->message.repeat = false;
result = true;
}
} else if(decoder->databit_cnt == 42) {
uint32_t* data1 = (void*)decoder->data;
uint16_t* data2 = (void*)(data1 + 1);
uint16_t address = *data1 & 0x1FFF;
uint16_t address_inverse = (*data1 >> 13) & 0x1FFF;
uint16_t command = ((*data1 >> 26) & 0x3F) | ((*data2 & 0x3) << 6);
uint16_t command_inverse = (*data2 >> 2) & 0xFF;
if((address == (~address_inverse & 0x1FFF)) && (command == (~command_inverse & 0xFF))) {
decoder->message.protocol = InfraredProtocolNEC42;
decoder->message.address = address;
decoder->message.command = command;
decoder->message.repeat = false;
result = true;
} else {
decoder->message.protocol = InfraredProtocolNEC42ext;
decoder->message.address = address | (address_inverse << 13);
decoder->message.command = command | (command_inverse << 8);
decoder->message.repeat = false;
result = true;
}
}
return result;
}
// timings start from Space (delay between message and repeat)
InfraredStatus infrared_decoder_nec_decode_repeat(InfraredCommonDecoder* decoder) {
furi_assert(decoder);
float preamble_tolerance = decoder->protocol->timings.preamble_tolerance;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
InfraredStatus status = InfraredStatusError;
if(decoder->timings_cnt < 4) return InfraredStatusOk;
if((decoder->timings[0] > INFRARED_NEC_REPEAT_PAUSE_MIN) &&
(decoder->timings[0] < INFRARED_NEC_REPEAT_PAUSE_MAX) &&
MATCH_TIMING(decoder->timings[1], INFRARED_NEC_REPEAT_MARK, preamble_tolerance) &&
MATCH_TIMING(decoder->timings[2], INFRARED_NEC_REPEAT_SPACE, preamble_tolerance) &&
MATCH_TIMING(decoder->timings[3], decoder->protocol->timings.bit1_mark, bit_tolerance)) {
status = InfraredStatusReady;
decoder->timings_cnt = 0;
} else {
status = InfraredStatusError;
}
return status;
}
void* infrared_decoder_nec_alloc(void) {
return infrared_common_decoder_alloc(&infrared_protocol_nec);
}
InfraredMessage* infrared_decoder_nec_decode(void* decoder, bool level, uint32_t duration) {
return infrared_common_decode(decoder, level, duration);
}
void infrared_decoder_nec_free(void* decoder) {
infrared_common_decoder_free(decoder);
}
void infrared_decoder_nec_reset(void* decoder) {
infrared_common_decoder_reset(decoder);
}