flipperzero-firmware/lib/infrared/encoder_decoder/nec/infrared_encoder_nec.c
Georgii Surkov 75e9de12b0
[FL-3078] Per protocol signal repeat count (#2293)
* Better Infrared protocol file structure
* Rename InfraredProtocolSpec to InfraredProtocolVariant
* Slightly better names
* Add repeat count field to protocol variant description
* Repeat the signal the appropriate number of times when brute-forcing
* Repeat the signal the appropriate number of times when sending via worker
* Better signal count logic in infrared_transmit
* Better variable names
* Convert some raw signals to messages in tv.ir

Co-authored-by: あく <alleteam@gmail.com>
2023-01-13 16:50:19 +03:00

91 lines
3.1 KiB
C

#include "infrared_protocol_nec_i.h"
#include <core/core_defines.h>
#include <core/check.h>
static const uint32_t repeat_timings[] = {
INFRARED_NEC_REPEAT_PERIOD - INFRARED_NEC_REPEAT_MARK - INFRARED_NEC_REPEAT_SPACE -
INFRARED_NEC_BIT1_MARK,
INFRARED_NEC_REPEAT_MARK,
INFRARED_NEC_REPEAT_SPACE,
INFRARED_NEC_BIT1_MARK,
};
void infrared_encoder_nec_reset(void* encoder_ptr, const InfraredMessage* message) {
furi_assert(encoder_ptr);
furi_assert(message);
InfraredCommonEncoder* encoder = encoder_ptr;
infrared_common_encoder_reset(encoder);
uint32_t* data1 = (void*)encoder->data;
uint32_t* data2 = data1 + 1;
if(message->protocol == InfraredProtocolNEC) {
uint8_t address = message->address;
uint8_t address_inverse = ~address;
uint8_t command = message->command;
uint8_t command_inverse = ~command;
*data1 = address;
*data1 |= address_inverse << 8;
*data1 |= command << 16;
*data1 |= command_inverse << 24;
encoder->bits_to_encode = 32;
} else if(message->protocol == InfraredProtocolNECext) {
*data1 = (uint16_t)message->address;
*data1 |= (message->command & 0xFFFF) << 16;
encoder->bits_to_encode = 32;
} else if(message->protocol == InfraredProtocolNEC42) {
/* 13 address + 13 inverse address + 8 command + 8 inv command */
*data1 = message->address & 0x1FFFUL;
*data1 |= (~message->address & 0x1FFFUL) << 13;
*data1 |= ((message->command & 0x3FUL) << 26);
*data2 = (message->command & 0xC0UL) >> 6;
*data2 |= (~message->command & 0xFFUL) << 2;
encoder->bits_to_encode = 42;
} else if(message->protocol == InfraredProtocolNEC42ext) {
*data1 = message->address & 0x3FFFFFF;
*data1 |= ((message->command & 0x3F) << 26);
*data2 = (message->command & 0xFFC0) >> 6;
encoder->bits_to_encode = 42;
} else {
furi_assert(0);
}
}
InfraredStatus infrared_encoder_nec_encode_repeat(
InfraredCommonEncoder* encoder,
uint32_t* duration,
bool* level) {
furi_assert(encoder);
/* space + 2 timings preambule + payload + stop bit */
uint32_t timings_encoded_up_to_repeat = 1 + 2 + encoder->bits_to_encode * 2 + 1;
uint32_t repeat_cnt = encoder->timings_encoded - timings_encoded_up_to_repeat;
furi_assert(encoder->timings_encoded >= timings_encoded_up_to_repeat);
if(repeat_cnt > 0) {
*duration = repeat_timings[repeat_cnt % COUNT_OF(repeat_timings)];
} else {
*duration = INFRARED_NEC_REPEAT_PERIOD - encoder->timings_sum;
}
*level = repeat_cnt % 2;
++encoder->timings_encoded;
bool done = (!((repeat_cnt + 1) % COUNT_OF(repeat_timings)));
return done ? InfraredStatusDone : InfraredStatusOk;
}
void* infrared_encoder_nec_alloc(void) {
return infrared_common_encoder_alloc(&infrared_protocol_nec);
}
void infrared_encoder_nec_free(void* encoder_ptr) {
infrared_common_encoder_free(encoder_ptr);
}
InfraredStatus infrared_encoder_nec_encode(void* encoder_ptr, uint32_t* duration, bool* level) {
return infrared_common_encode(encoder_ptr, duration, level);
}