flipperzero-firmware/lib/subghz/protocols/came_twee.c
Skorpionm 9a9abd59e9
[FL-2904, FL-2900, FL-2890] WS: add app WeatherStation (#1833)
* WeatherStation: start
* SubGhz: rename protocol magellen -> magellan
* WeatherStation: err Unresolved symbols: {'subghz_protocol_decoder_base_get_string'}
* WeatherStation: fix Unresolved symbols: {'subghz_protocol_decoder_base_get_string'}
* Subghz: add set protocol_items
* WeatherStation: adding your protocols
* WS: add Infactory protocol
* WS: add history
* WS: add setting
* WS: add lock
* WS: add hopper frequency
* WS: fix history
* WS fix string_t -> FuriString*
* WS: add images
* WS: history record update when receiving data from the sensor again
* WS: add receiver info, delete extra code
* WS: add protocol ThermoPRO_TX4
* [FL-2900] SubGhz: Move icons in Sub-GHz
* WS: add Notification
* [FL-2890] SubGhz: Rename *_user files in resources to _user.example
* WS: add about scene
* WS: removing redundant code
* WS: add  protocol Nexus-TH
* WS: add protocol GT_WT03
* WS: fix notification and rename "Weather Station" -> "Read Weather Station"
* SubGhz: partial unit tests fix
* SubGhz: fix unit_test
* SubGhz: remove dead code
* SubGhz: rename SubGhzPresetDefinition into SubGhzRadioPreset, cleanup subghz types.

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-10-20 02:27:26 +09:00

469 lines
17 KiB
C

#include "came_twee.h"
#include <lib/toolbox/manchester_decoder.h>
#include <lib/toolbox/manchester_encoder.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
/*
* Help
* https://phreakerclub.com/forum/showthread.php?t=635&highlight=came+twin
*
*/
#define TAG "SubGhzProtocolCAME_Twee"
#define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
#define CNT_TO_DIP(dip) \
(dip & 0x0200 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \
(dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \
(dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \
(dip & 0x0001 ? '1' : '0')
/**
* Rainbow table Came Twee.
*/
static const uint32_t came_twee_magic_numbers_xor[15] = {
0x0E0E0E00,
0x1D1D1D11,
0x2C2C2C22,
0x3B3B3B33,
0x4A4A4A44,
0x59595955,
0x68686866,
0x77777777,
0x86868688,
0x95959599,
0xA4A4A4AA,
0xB3B3B3BB,
0xC2C2C2CC,
0xD1D1D1DD,
0xE0E0E0EE,
};
static const SubGhzBlockConst subghz_protocol_came_twee_const = {
.te_short = 500,
.te_long = 1000,
.te_delta = 250,
.min_count_bit_for_found = 54,
};
struct SubGhzProtocolDecoderCameTwee {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
ManchesterState manchester_saved_state;
};
struct SubGhzProtocolEncoderCameTwee {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
CameTweeDecoderStepReset = 0,
CameTweeDecoderStepDecoderData,
} CameTweeDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_came_twee_decoder = {
.alloc = subghz_protocol_decoder_came_twee_alloc,
.free = subghz_protocol_decoder_came_twee_free,
.feed = subghz_protocol_decoder_came_twee_feed,
.reset = subghz_protocol_decoder_came_twee_reset,
.get_hash_data = subghz_protocol_decoder_came_twee_get_hash_data,
.serialize = subghz_protocol_decoder_came_twee_serialize,
.deserialize = subghz_protocol_decoder_came_twee_deserialize,
.get_string = subghz_protocol_decoder_came_twee_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_came_twee_encoder = {
.alloc = subghz_protocol_encoder_came_twee_alloc,
.free = subghz_protocol_encoder_came_twee_free,
.deserialize = subghz_protocol_encoder_came_twee_deserialize,
.stop = subghz_protocol_encoder_came_twee_stop,
.yield = subghz_protocol_encoder_came_twee_yield,
};
const SubGhzProtocol subghz_protocol_came_twee = {
.name = SUBGHZ_PROTOCOL_CAME_TWEE_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_came_twee_decoder,
.encoder = &subghz_protocol_came_twee_encoder,
};
void* subghz_protocol_encoder_came_twee_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderCameTwee* instance = malloc(sizeof(SubGhzProtocolEncoderCameTwee));
instance->base.protocol = &subghz_protocol_came_twee;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 1536; //max upload 92*14 = 1288 !!!!
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_came_twee_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderCameTwee* instance = context;
free(instance->encoder.upload);
free(instance);
}
static LevelDuration
subghz_protocol_encoder_came_twee_add_duration_to_upload(ManchesterEncoderResult result) {
LevelDuration data = {.duration = 0, .level = 0};
switch(result) {
case ManchesterEncoderResultShortLow:
data.duration = subghz_protocol_came_twee_const.te_short;
data.level = false;
break;
case ManchesterEncoderResultLongLow:
data.duration = subghz_protocol_came_twee_const.te_long;
data.level = false;
break;
case ManchesterEncoderResultLongHigh:
data.duration = subghz_protocol_came_twee_const.te_long;
data.level = true;
break;
case ManchesterEncoderResultShortHigh:
data.duration = subghz_protocol_came_twee_const.te_short;
data.level = true;
break;
default:
furi_crash("SubGhz: ManchesterEncoderResult is incorrect.");
break;
}
return level_duration_make(data.level, data.duration);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderCameTwee instance
*/
static void subghz_protocol_encoder_came_twee_get_upload(SubGhzProtocolEncoderCameTwee* instance) {
furi_assert(instance);
size_t index = 0;
ManchesterEncoderState enc_state;
manchester_encoder_reset(&enc_state);
ManchesterEncoderResult result;
uint64_t temp_parcel = 0x003FFF7200000000; //parcel mask
for(int i = 14; i >= 0; i--) {
temp_parcel = (temp_parcel & 0xFFFFFFFF00000000) |
(instance->generic.serial ^ came_twee_magic_numbers_xor[i]);
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(!manchester_encoder_advance(&enc_state, !bit_read(temp_parcel, i - 1), &result)) {
instance->encoder.upload[index++] =
subghz_protocol_encoder_came_twee_add_duration_to_upload(result);
manchester_encoder_advance(&enc_state, !bit_read(temp_parcel, i - 1), &result);
}
instance->encoder.upload[index++] =
subghz_protocol_encoder_came_twee_add_duration_to_upload(result);
}
instance->encoder.upload[index] = subghz_protocol_encoder_came_twee_add_duration_to_upload(
manchester_encoder_finish(&enc_state));
if(level_duration_get_level(instance->encoder.upload[index])) {
index++;
}
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_came_twee_const.te_long * 51);
}
instance->encoder.size_upload = index;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_came_twee_remote_controller(SubGhzBlockGeneric* instance) {
/* Came Twee 54 bit, rolling code 15 parcels with
* a decreasing counter from 0xE to 0x0
* with originally coded dip switches on the console 10 bit code
*
* 0x003FFF72E04A6FEE
* 0x003FFF72D17B5EDD
* 0x003FFF72C2684DCC
* 0x003FFF72B3193CBB
* 0x003FFF72A40E2BAA
* 0x003FFF72953F1A99
* 0x003FFF72862C0988
* 0x003FFF7277DDF877
* 0x003FFF7268C2E766
* 0x003FFF7259F3D655
* 0x003FFF724AE0C544
* 0x003FFF723B91B433
* 0x003FFF722C86A322
* 0x003FFF721DB79211
* 0x003FFF720EA48100
*
* decryption
* the last 32 bits, do XOR by the desired number, divide the result by 4,
* convert the first 16 bits of the resulting 32-bit number to bin and do
* bit-by-bit mirroring, adding up to 10 bits
*
* Example
* Step 1. 0x003FFF721DB79211 => 0x1DB79211
* Step 4. 0x1DB79211 xor 0x1D1D1D11 => 0x00AA8F00
* Step 4. 0x00AA8F00 / 4 => 0x002AA3C0
* Step 5. 0x002AA3C0 => 0x002A
* Step 6. 0x002A bin => b101010
* Step 7. b101010 => b0101010000
* Step 8. b0101010000 => (Dip) Off ON Off ON Off ON Off Off Off Off
*/
uint8_t cnt_parcel = (uint8_t)(instance->data & 0xF);
uint32_t data = (uint32_t)(instance->data & 0x0FFFFFFFF);
data = (data ^ came_twee_magic_numbers_xor[cnt_parcel]);
instance->serial = data;
data /= 4;
instance->btn = (data >> 4) & 0x0F;
data >>= 16;
data = (uint16_t)subghz_protocol_blocks_reverse_key(data, 16);
instance->cnt = data >> 6;
}
bool subghz_protocol_encoder_came_twee_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderCameTwee* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_came_twee_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_came_twee_remote_controller(&instance->generic);
subghz_protocol_encoder_came_twee_get_upload(instance);
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_came_twee_stop(void* context) {
SubGhzProtocolEncoderCameTwee* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_came_twee_yield(void* context) {
SubGhzProtocolEncoderCameTwee* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_came_twee_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderCameTwee* instance = malloc(sizeof(SubGhzProtocolDecoderCameTwee));
instance->base.protocol = &subghz_protocol_came_twee;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_came_twee_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
free(instance);
}
void subghz_protocol_decoder_came_twee_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
instance->decoder.parser_step = CameTweeDecoderStepReset;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
void subghz_protocol_decoder_came_twee_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
ManchesterEvent event = ManchesterEventReset;
switch(instance->decoder.parser_step) {
case CameTweeDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_came_twee_const.te_long * 51) <
subghz_protocol_came_twee_const.te_delta * 20)) {
//Found header CAME
instance->decoder.parser_step = CameTweeDecoderStepDecoderData;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongLow,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongHigh,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
}
break;
case CameTweeDecoderStepDecoderData:
if(!level) {
if(DURATION_DIFF(duration, subghz_protocol_came_twee_const.te_short) <
subghz_protocol_came_twee_const.te_delta) {
event = ManchesterEventShortLow;
} else if(
DURATION_DIFF(duration, subghz_protocol_came_twee_const.te_long) <
subghz_protocol_came_twee_const.te_delta) {
event = ManchesterEventLongLow;
} else if(
duration >= ((uint32_t)subghz_protocol_came_twee_const.te_long * 2 +
subghz_protocol_came_twee_const.te_delta)) {
if(instance->decoder.decode_count_bit ==
subghz_protocol_came_twee_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongLow,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventLongHigh,
&instance->manchester_saved_state,
NULL);
manchester_advance(
instance->manchester_saved_state,
ManchesterEventShortLow,
&instance->manchester_saved_state,
NULL);
} else {
instance->decoder.parser_step = CameTweeDecoderStepReset;
}
} else {
if(DURATION_DIFF(duration, subghz_protocol_came_twee_const.te_short) <
subghz_protocol_came_twee_const.te_delta) {
event = ManchesterEventShortHigh;
} else if(
DURATION_DIFF(duration, subghz_protocol_came_twee_const.te_long) <
subghz_protocol_came_twee_const.te_delta) {
event = ManchesterEventLongHigh;
} else {
instance->decoder.parser_step = CameTweeDecoderStepReset;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->decoder.decode_data = (instance->decoder.decode_data << 1) | !data;
instance->decoder.decode_count_bit++;
}
}
break;
}
}
uint8_t subghz_protocol_decoder_came_twee_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_came_twee_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_came_twee_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_came_twee_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_came_twee_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderCameTwee* instance = context;
subghz_protocol_came_twee_remote_controller(&instance->generic);
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
furi_string_cat_printf(
output,
"%s %db\r\n"
"Key:0x%lX%08lX\r\n"
"Btn:%X\r\n"
"DIP:" DIP_PATTERN "\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo,
instance->generic.btn,
CNT_TO_DIP(instance->generic.cnt));
}