flipperzero-firmware/applications/cc1101-workaround/cc1101-workaround.cpp
2020-10-19 09:22:56 +03:00

410 lines
11 KiB
C++

#include "flipper.h"
#include "cc1101-workaround/cc1101.h"
#define RSSI_DELAY 5000 //rssi delay in micro second
#define NUM_OF_SUB_BANDS 7
#define CHAN_SPA 0.05 // channel spacing
int16_t rssi_to_dbm(uint8_t rssi_dec, uint8_t rssiOffset) {
int16_t rssi;
if(rssi_dec >= 128) {
rssi = (int16_t)((int16_t)(rssi_dec - 256) / 2) - rssiOffset;
} else {
rssi = (rssi_dec / 2) - rssiOffset;
}
return rssi;
}
typedef struct {
float base_freq;
uint8_t reg[3]; // FREQ2, FREQ1, FREQ0
uint8_t first_channel;
uint8_t last_channel;
uint8_t rssi_offset;
} Band;
typedef struct {
const Band* band;
uint16_t channel;
} FreqConfig;
void setup_freq(CC1101* cc1101, const FreqConfig* config) {
// cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length
cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off
cc1101->SetFreq(config->band->reg[0], config->band->reg[1], config->band->reg[2]);
cc1101->SetChannel(config->channel);
/*
//set test0 to 0x09
cc1101->SpiWriteReg(CC1101_TEST0, 0x09);
//set FSCAL2 to 0x2A to force VCO HIGH
cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A);
// perform a manual calibration by issuing SCAL command
cc1101->SpiStrobe(CC1101_SCAL);
*/
}
int16_t rx_rssi(CC1101* cc1101, const FreqConfig* config) {
cc1101->SetReceive();
delayMicroseconds(RSSI_DELAY);
// 1.4.8) read PKTSTATUS register while the radio is in RX state
/*uint8_t _pkt_status = */ cc1101->SpiReadStatus(CC1101_PKTSTATUS);
// 1.4.9) enter IDLE state by issuing a SIDLE command
cc1101->SpiStrobe(CC1101_SIDLE);
// //read rssi value and converto to dBm form
uint8_t rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI);
int16_t rssi_dBm = rssi_to_dbm(rssi_dec, config->band->rssi_offset);
return rssi_dBm;
}
void tx(CC1101* cc1101, const FreqConfig* config) {
/*
cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //enable FS_AUTOCAL
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43); //back to recommended config
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91); //back to recommended config
*/
cc1101->SetFreq(config->band->reg[0], config->band->reg[1], config->band->reg[2]);
cc1101->SetChannel(config->channel);
cc1101->SetTransmit();
}
void idle(CC1101* cc1101) {
cc1101->SpiStrobe(CC1101_SIDLE);
}
const Band bands[NUM_OF_SUB_BANDS] = {
{387, {0x0E, 0xE2, 0x76}, 0, 255, 74},
{399.8, {0x0F, 0x60, 0x76}, 0, 255, 74},
{412.6, {0x0F, 0xDE, 0x76}, 0, 255, 74},
{425.4, {0x10, 0x5C, 0x76}, 160, 180, 74},
{438.2, {0x10, 0xDA, 0x76}, 0, 255, 74},
{451, {0x11, 0x58, 0x8F}, 0, 255, 74},
{463.8, {0x11, 0xD6, 0x8F}, 0, 4, 74},
};
const FreqConfig FREQ_LIST[] = {
{&bands[0], 0},
{&bands[0], 50},
{&bands[0], 100},
{&bands[0], 150},
{&bands[0], 200},
{&bands[1], 0},
{&bands[1], 50},
{&bands[1], 100},
{&bands[1], 150},
{&bands[1], 200},
{&bands[2], 0},
{&bands[2], 50},
{&bands[2], 100},
{&bands[2], 150},
{&bands[2], 200},
{&bands[3], 160},
{&bands[3], 170},
{&bands[4], 0},
{&bands[4], 50},
{&bands[4], 100},
{&bands[4], 150},
{&bands[4], 200},
{&bands[5], 0},
{&bands[5], 50},
{&bands[5], 100},
{&bands[5], 150},
{&bands[5], 200},
{&bands[6], 0},
};
typedef enum {
EventTypeTick,
EventTypeKey,
} EventType;
typedef struct {
union {
InputEvent input;
} value;
EventType type;
} Event;
typedef enum {
ModeRx,
ModeTx
} Mode;
typedef struct {
int16_t dbm;
uint8_t reg;
} TxLevel;
const TxLevel TX_LEVELS[] = {
{-10, 0},
{-5, 0},
{0, 0},
{5, 0},
};
typedef struct {
Mode mode;
size_t active_freq;
int16_t last_rssi;
size_t tx_level;
bool need_cc1101_conf;
} State;
static void render_callback(CanvasApi* canvas, void* ctx) {
State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
canvas->clear(canvas);
canvas->set_color(canvas, ColorBlack);
canvas->set_font(canvas, FontPrimary);
canvas->draw_str(canvas, 2, 12, "cc1101 workaround");
{
char buf[24];
FreqConfig conf = FREQ_LIST[state->active_freq];
float freq = conf.band->base_freq + CHAN_SPA * conf.channel;
sprintf(buf, "freq: %ld.%02ld MHz", (uint32_t)freq, (uint32_t)(freq * 100.) % 100);
canvas->set_font(canvas, FontSecondary);
canvas->draw_str(canvas, 2, 25, buf);
}
{
canvas->set_font(canvas, FontSecondary);
if(state->need_cc1101_conf) {
canvas->draw_str(canvas, 2, 36, "mode: configuring...");
} else if(state->mode == ModeRx) {
canvas->draw_str(canvas, 2, 36, "mode: RX");
} else if(state->mode == ModeTx) {
canvas->draw_str(canvas, 2, 36, "mode: TX");
} else {
canvas->draw_str(canvas, 2, 36, "mode: unknown");
}
}
{
if(!state->need_cc1101_conf && state->mode == ModeRx) {
char buf[24];
sprintf(buf, "RSSI: %d dBm", state->last_rssi);
canvas->set_font(canvas, FontSecondary);
canvas->draw_str(canvas, 2, 48, buf);
}
}
{
char buf[24];
sprintf(buf, "tx level: %d dBm", TX_LEVELS[state->tx_level].dbm);
canvas->set_font(canvas, FontSecondary);
canvas->draw_str(canvas, 2, 63, buf);
}
release_mutex((ValueMutex*)ctx, state);
}
static void input_callback(InputEvent* input_event, void* ctx) {
osMessageQueueId_t event_queue = (QueueHandle_t)ctx;
Event event;
event.type = EventTypeKey;
event.value.input = *input_event;
osMessageQueuePut(event_queue, &event, 0, 0);
}
extern "C" void cc1101_workaround(void* p) {
osMessageQueueId_t event_queue =
osMessageQueueNew(1, sizeof(Event), NULL);
assert(event_queue);
State _state;
_state.mode = ModeRx;
_state.active_freq = 0;
_state.need_cc1101_conf = true;
_state.last_rssi = 0;
_state.tx_level = 0;
ValueMutex state_mutex;
if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
printf("[cc1101] cannot create mutex\n");
furiac_exit(NULL);
}
Widget* widget = widget_alloc();
widget_draw_callback_set(widget, render_callback, &state_mutex);
widget_input_callback_set(widget, input_callback, event_queue);
// Open GUI and register widget
GuiApi* gui = (GuiApi*)furi_open("gui");
if(gui == NULL) {
printf("[cc1101] gui is not available\n");
furiac_exit(NULL);
}
gui->add_widget(gui, widget, WidgetLayerFullscreen);
printf("[cc1101] creating device\n");
CC1101 cc1101(GpioPin{CC1101_CS_GPIO_Port, CC1101_CS_Pin});
printf("[cc1101] init device\n");
uint8_t address = cc1101.Init();
if(address > 0) {
printf("[cc1101] init done: %d\n", address);
} else {
printf("[cc1101] init fail\n");
furiac_exit(NULL);
}
// RX filter bandwidth 58.035714(0xFD) 100k(0xCD) 200k(0x8D)
cc1101.SpiWriteReg(CC1101_MDMCFG4, 0xCD);
// datarate config 250kBaud for the purpose of fast rssi measurement
cc1101.SpiWriteReg(CC1101_MDMCFG3, 0x3B);
// FEC preamble etc. last 2 bits for channel spacing
cc1101.SpiWriteReg(CC1101_MDMCFG1, 0x20);
// 50khz channel spacing
cc1101.SpiWriteReg(CC1101_MDMCFG0, 0xF8);
// create pin
GpioPin led = {GPIOA, GPIO_PIN_8};
// configure pin
pinMode(led, GpioModeOpenDrain);
const int16_t RSSI_THRESHOLD = -89;
Event event;
while(1) {
osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 150);
State* state = (State*)acquire_mutex_block(&state_mutex);
if(event_status == osOK) {
if(event.type == EventTypeKey) {
if(event.value.input.state && event.value.input.input == InputBack) {
printf("[cc1101] bye!\n");
// TODO remove all widgets create by app
widget_enabled_set(widget, false);
furiac_exit(NULL);
}
if(event.value.input.state && event.value.input.input == InputUp) {
if(state->active_freq > 0) {
state->active_freq--;
state->need_cc1101_conf = true;
}
}
if(event.value.input.state && event.value.input.input == InputDown) {
if(state->active_freq < (sizeof(FREQ_LIST)/sizeof(FREQ_LIST[0]) - 1)) {
state->active_freq++;
state->need_cc1101_conf = true;
}
}
if(event.value.input.state && event.value.input.input == InputLeft) {
if(state->tx_level < (sizeof(TX_LEVELS)/sizeof(TX_LEVELS[0]) - 1)) {
state->tx_level++;
} else {
state->tx_level = 0;
}
state->need_cc1101_conf = true;
}
if(event.value.input.input == InputOk) {
state->mode = event.value.input.state ? ModeTx : ModeRx;
state->need_cc1101_conf = true;
}
}
} else {
if(!state->need_cc1101_conf && state->mode == ModeRx) {
state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]);
}
}
if(state->need_cc1101_conf) {
if(state->mode == ModeRx) {
setup_freq(&cc1101, &FREQ_LIST[state->active_freq]);
state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq]);
// idle(&cc1101);
} else if(state->mode == ModeTx) {
tx(&cc1101, &FREQ_LIST[state->active_freq]);
}
state->need_cc1101_conf = false;
}
digitalWrite(
led,
(state->last_rssi > RSSI_THRESHOLD && !state->need_cc1101_conf) ? LOW : HIGH
);
release_mutex(&state_mutex, state);
widget_update(widget);
}
/*
while(1) {
for(uint8_t i = 0; i <= NUM_OF_SUB_BANDS; i++) {
highRSSI[i] = MIN_DBM;
}
activeChannel = 300;
tx(&cc1101, activeBand, activeChannel, 500);
scanFreq(&cc1101);
if(activeChannel < 256 && highRSSI[activeBand] > RSSI_THRESHOLD) {
float freq = base_freq[activeBand] + CHAN_SPA * activeChannel;
printf(
"channel: %d, freq: %d, RSSI: %d\n",
activeChannel,
(uint32_t)(freq * 1000),
highRSSI[activeBand]
);
*
if(tx_on) {
tx(&cc1101, activeBand, activeChannel, 500);
} else {
osDelay(1000);
}
*
} else {
// printf("0 carrier sensed\n");
}
*
uint8_t band = 4; // 438.2 MHz
*
cc1101.SetFreq(freqSettings[band][0], freqSettings[band][1], freqSettings[band][2]);
cc1101.SetChannel(0);
cc1101.SetTransmit();
delay(5000);
cc1101.SpiStrobe(CC1101_SIDLE);
*
delay(1000);
}
*/
}