flipperzero-firmware/firmware/targets/f7/fatfs/stm32_adafruit_sd.c
2023-01-30 16:14:30 +07:00

1114 lines
38 KiB
C

/**
******************************************************************************
* @file stm32_adafruit_sd.c
* @author MCD Application Team
* @version V3.0.0
* @date 23-December-2016
* @brief This file provides a set of functions needed to manage the SD card
* mounted on the Adafruit 1.8" TFT LCD shield (reference ID 802),
* that is used with the STM32 Nucleo board through SPI interface.
* It implements a high level communication layer for read and write
* from/to this memory. The needed STM32XXxx hardware resources (SPI and
* GPIO) are defined in stm32XXxx_nucleo.h file, and the initialization is
* performed in SD_IO_Init() function declared in stm32XXxx_nucleo.c
* file.
* You can easily tailor this driver to any other development board,
* by just adapting the defines for hardware resources and
* SD_IO_Init() function.
*
* +-------------------------------------------------------+
* | Pin assignment |
* +-------------------------+---------------+-------------+
* | STM32XXxx SPI Pins | SD | Pin |
* +-------------------------+---------------+-------------+
* | SD_SPI_CS_PIN | ChipSelect | 1 |
* | SD_SPI_MOSI_PIN / MOSI | DataIn | 2 |
* | | GND | 3 (0 V) |
* | | VDD | 4 (3.3 V)|
* | SD_SPI_SCK_PIN / SCLK | Clock | 5 |
* | | GND | 6 (0 V) |
* | SD_SPI_MISO_PIN / MISO | DataOut | 7 |
* +-------------------------+---------------+-------------+
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* File Info : -----------------------------------------------------------------
User NOTES
1. How to use this driver:
--------------------------
- This driver does not need a specific component driver for the micro SD device
to be included with.
2. Driver description:
---------------------
+ Initialization steps:
o Initialize the micro SD card using the BSP_SD_Init() function.
o Checking the SD card presence is not managed because SD detection pin is
not physically mapped on the Adafruit shield.
o The function BSP_SD_GetCardInfo() is used to get the micro SD card information
which is stored in the structure "SD_CardInfo".
+ Micro SD card operations
o The micro SD card can be accessed with read/write block(s) operations once
it is ready for access. The access can be performed in polling
mode by calling the functions BSP_SD_ReadBlocks()/BSP_SD_WriteBlocks()
o The SD erase block(s) is performed using the function BSP_SD_Erase() with
specifying the number of blocks to erase.
o The SD runtime status is returned when calling the function BSP_SD_GetStatus().
------------------------------------------------------------------------------*/
/* Includes ------------------------------------------------------------------*/
#include "stm32_adafruit_sd.h"
#include "stdlib.h"
#include "string.h"
#include "stdio.h"
#include <furi_hal.h>
#include "sector_cache.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32_ADAFRUIT
* @{
*/
/** @defgroup STM32_ADAFRUIT_SD
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/** @defgroup STM32_ADAFRUIT_SD_Private_Types_Definitions
* @{
*/
typedef struct {
uint8_t r1;
uint8_t r2;
uint8_t r3;
uint8_t r4;
uint8_t r5;
} SD_CmdAnswer_typedef;
/**
* @}
*/
/* Private define ------------------------------------------------------------*/
/** @defgroup STM32_ADAFRUIT_SD_Private_Defines
* @{
*/
#define SD_DUMMY_BYTE 0xFF
#define SD_MAX_FRAME_LENGTH 17 /* Lenght = 16 + 1 */
#define SD_CMD_LENGTH 6
#define SD_MAX_TRY 100 /* Number of try */
#define SD_CSD_STRUCT_V1 0x2 /* CSD struct version V1 */
#define SD_CSD_STRUCT_V2 0x1 /* CSD struct version V2 */
/**
* @brief SD ansewer format
*/
typedef enum {
SD_ANSWER_R1_EXPECTED,
SD_ANSWER_R1B_EXPECTED,
SD_ANSWER_R2_EXPECTED,
SD_ANSWER_R3_EXPECTED,
SD_ANSWER_R4R5_EXPECTED,
SD_ANSWER_R7_EXPECTED,
} SD_Answer_type;
/**
* @brief Start Data tokens:
* Tokens (necessary because at nop/idle (and CS active) only 0xff is
* on the data/command line)
*/
#define SD_TOKEN_START_DATA_SINGLE_BLOCK_READ \
0xFE /* Data token start byte, Start Single Block Read */
#define SD_TOKEN_START_DATA_MULTIPLE_BLOCK_READ \
0xFE /* Data token start byte, Start Multiple Block Read */
#define SD_TOKEN_START_DATA_SINGLE_BLOCK_WRITE \
0xFE /* Data token start byte, Start Single Block Write */
#define SD_TOKEN_START_DATA_MULTIPLE_BLOCK_WRITE \
0xFD /* Data token start byte, Start Multiple Block Write */
#define SD_TOKEN_STOP_DATA_MULTIPLE_BLOCK_WRITE \
0xFD /* Data toke stop byte, Stop Multiple Block Write */
/**
* @brief Commands: CMDxx = CMD-number | 0x40
*/
#define SD_CMD_GO_IDLE_STATE 0 /* CMD0 = 0x40 */
#define SD_CMD_SEND_OP_COND 1 /* CMD1 = 0x41 */
#define SD_CMD_SEND_IF_COND 8 /* CMD8 = 0x48 */
#define SD_CMD_SEND_CSD 9 /* CMD9 = 0x49 */
#define SD_CMD_SEND_CID 10 /* CMD10 = 0x4A */
#define SD_CMD_STOP_TRANSMISSION 12 /* CMD12 = 0x4C */
#define SD_CMD_SEND_STATUS 13 /* CMD13 = 0x4D */
#define SD_CMD_SET_BLOCKLEN 16 /* CMD16 = 0x50 */
#define SD_CMD_READ_SINGLE_BLOCK 17 /* CMD17 = 0x51 */
#define SD_CMD_READ_MULT_BLOCK 18 /* CMD18 = 0x52 */
#define SD_CMD_SET_BLOCK_COUNT 23 /* CMD23 = 0x57 */
#define SD_CMD_WRITE_SINGLE_BLOCK 24 /* CMD24 = 0x58 */
#define SD_CMD_WRITE_MULT_BLOCK 25 /* CMD25 = 0x59 */
#define SD_CMD_PROG_CSD 27 /* CMD27 = 0x5B */
#define SD_CMD_SET_WRITE_PROT 28 /* CMD28 = 0x5C */
#define SD_CMD_CLR_WRITE_PROT 29 /* CMD29 = 0x5D */
#define SD_CMD_SEND_WRITE_PROT 30 /* CMD30 = 0x5E */
#define SD_CMD_SD_ERASE_GRP_START 32 /* CMD32 = 0x60 */
#define SD_CMD_SD_ERASE_GRP_END 33 /* CMD33 = 0x61 */
#define SD_CMD_UNTAG_SECTOR 34 /* CMD34 = 0x62 */
#define SD_CMD_ERASE_GRP_START 35 /* CMD35 = 0x63 */
#define SD_CMD_ERASE_GRP_END 36 /* CMD36 = 0x64 */
#define SD_CMD_UNTAG_ERASE_GROUP 37 /* CMD37 = 0x65 */
#define SD_CMD_ERASE 38 /* CMD38 = 0x66 */
#define SD_CMD_SD_APP_OP_COND 41 /* CMD41 = 0x69 */
#define SD_CMD_APP_CMD 55 /* CMD55 = 0x77 */
#define SD_CMD_READ_OCR 58 /* CMD55 = 0x79 */
/**
* @brief SD reponses and error flags
*/
typedef enum {
/* R1 answer value */
SD_R1_NO_ERROR = (0x00),
SD_R1_IN_IDLE_STATE = (0x01),
SD_R1_ERASE_RESET = (0x02),
SD_R1_ILLEGAL_COMMAND = (0x04),
SD_R1_COM_CRC_ERROR = (0x08),
SD_R1_ERASE_SEQUENCE_ERROR = (0x10),
SD_R1_ADDRESS_ERROR = (0x20),
SD_R1_PARAMETER_ERROR = (0x40),
/* R2 answer value */
SD_R2_NO_ERROR = 0x00,
SD_R2_CARD_LOCKED = 0x01,
SD_R2_LOCKUNLOCK_ERROR = 0x02,
SD_R2_ERROR = 0x04,
SD_R2_CC_ERROR = 0x08,
SD_R2_CARD_ECC_FAILED = 0x10,
SD_R2_WP_VIOLATION = 0x20,
SD_R2_ERASE_PARAM = 0x40,
SD_R2_OUTOFRANGE = 0x80,
/**
* @brief Data response error
*/
SD_DATA_OK = (0x05),
SD_DATA_CRC_ERROR = (0x0B),
SD_DATA_WRITE_ERROR = (0x0D),
SD_DATA_OTHER_ERROR = (0xFF)
} SD_Error;
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup STM32_ADAFRUIT_SD_Private_Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup STM32_ADAFRUIT_SD_Private_Variables
* @{
*/
__IO uint8_t SdStatus = SD_NOT_PRESENT;
/* flag_SDHC :
0 : Standard capacity
1 : High capacity
*/
uint16_t flag_SDHC = 0;
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
static uint8_t SD_GetCIDRegister(SD_CID* Cid);
static uint8_t SD_GetCSDRegister(SD_CSD* Csd);
static uint8_t SD_GetDataResponse(void);
static uint8_t SD_GoIdleState(void);
static SD_CmdAnswer_typedef SD_SendCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Answer);
static uint8_t SD_WaitData(uint8_t data);
static uint8_t SD_ReadData(void);
/** @defgroup STM32_ADAFRUIT_SD_Private_Function_Prototypes
* @{
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
void SD_SPI_Bus_To_Down_State() {
furi_hal_gpio_init_ex(
furi_hal_sd_spi_handle->miso,
GpioModeOutputPushPull,
GpioPullNo,
GpioSpeedVeryHigh,
GpioAltFnUnused);
furi_hal_gpio_init_ex(
furi_hal_sd_spi_handle->mosi,
GpioModeOutputPushPull,
GpioPullNo,
GpioSpeedVeryHigh,
GpioAltFnUnused);
furi_hal_gpio_init_ex(
furi_hal_sd_spi_handle->sck,
GpioModeOutputPushPull,
GpioPullNo,
GpioSpeedVeryHigh,
GpioAltFnUnused);
furi_hal_gpio_write(furi_hal_sd_spi_handle->cs, false);
furi_hal_gpio_write(furi_hal_sd_spi_handle->miso, false);
furi_hal_gpio_write(furi_hal_sd_spi_handle->mosi, false);
furi_hal_gpio_write(furi_hal_sd_spi_handle->sck, false);
}
void SD_SPI_Bus_To_Normal_State() {
furi_hal_gpio_write(furi_hal_sd_spi_handle->cs, true);
furi_hal_gpio_init_ex(
furi_hal_sd_spi_handle->miso,
GpioModeAltFunctionPushPull,
GpioPullUp,
GpioSpeedVeryHigh,
GpioAltFn5SPI2);
furi_hal_gpio_init_ex(
furi_hal_sd_spi_handle->mosi,
GpioModeAltFunctionPushPull,
GpioPullUp,
GpioSpeedVeryHigh,
GpioAltFn5SPI2);
furi_hal_gpio_init_ex(
furi_hal_sd_spi_handle->sck,
GpioModeAltFunctionPushPull,
GpioPullUp,
GpioSpeedVeryHigh,
GpioAltFn5SPI2);
}
/** @defgroup STM32_ADAFRUIT_SD_Private_Functions
* @{
*/
uint8_t BSP_SD_MaxMountRetryCount() {
return 10;
}
/**
* @brief Initializes the SD/SD communication.
* @param None
* @retval The SD Response:
* - MSD_ERROR: Sequence failed
* - MSD_OK: Sequence succeed
*/
uint8_t BSP_SD_Init(bool reset_card) {
/* Slow speed init */
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_sd_slow);
furi_hal_sd_spi_handle = &furi_hal_spi_bus_handle_sd_slow;
/* We must reset card in spi_lock context */
if(reset_card) {
/* disable power and set low on all bus pins */
furi_hal_power_disable_external_3_3v();
SD_SPI_Bus_To_Down_State();
hal_sd_detect_set_low();
furi_delay_ms(250);
/* reinit bus and enable power */
SD_SPI_Bus_To_Normal_State();
hal_sd_detect_init();
furi_hal_power_enable_external_3_3v();
furi_delay_ms(100);
}
/* Configure IO functionalities for SD pin */
SD_IO_Init();
/* SD detection pin is not physically mapped on the Adafruit shield */
SdStatus = SD_PRESENT;
uint8_t res = BSP_SD_ERROR;
for(uint8_t i = 0; i < 128; i++) {
res = SD_GoIdleState();
if(res == BSP_SD_OK) break;
}
furi_hal_sd_spi_handle = NULL;
furi_hal_spi_release(&furi_hal_spi_bus_handle_sd_slow);
sector_cache_init();
/* SD initialized and set to SPI mode properly */
return res;
}
/**
* @brief Returns information about specific card.
* @param pCardInfo: Pointer to a SD_CardInfo structure that contains all SD
* card information.
* @retval The SD Response:
* - MSD_ERROR: Sequence failed
* - MSD_OK: Sequence succeed
*/
uint8_t BSP_SD_GetCardInfo(SD_CardInfo* pCardInfo) {
uint8_t status;
status = SD_GetCSDRegister(&(pCardInfo->Csd));
status |= SD_GetCIDRegister(&(pCardInfo->Cid));
if(flag_SDHC == 1) {
pCardInfo->LogBlockSize = 512;
pCardInfo->CardBlockSize = 512;
pCardInfo->CardCapacity = ((uint64_t)pCardInfo->Csd.version.v2.DeviceSize + 1UL) * 1024UL *
(uint64_t)pCardInfo->LogBlockSize;
pCardInfo->LogBlockNbr = (pCardInfo->CardCapacity) / (pCardInfo->LogBlockSize);
} else {
pCardInfo->CardCapacity = (pCardInfo->Csd.version.v1.DeviceSize + 1);
pCardInfo->CardCapacity *= (1UL << (pCardInfo->Csd.version.v1.DeviceSizeMul + 2));
pCardInfo->LogBlockSize = 512;
pCardInfo->CardBlockSize = 1UL << (pCardInfo->Csd.RdBlockLen);
pCardInfo->CardCapacity *= pCardInfo->CardBlockSize;
pCardInfo->LogBlockNbr = (pCardInfo->CardCapacity) / (pCardInfo->LogBlockSize);
}
return status;
}
/**
* @brief Reads block(s) from a specified address in the SD card, in polling mode.
* @param pData: Pointer to the buffer that will contain the data to transmit
* @param ReadAddr: Address from where data is to be read. The address is counted
* in blocks of 512bytes
* @param NumOfBlocks: Number of SD blocks to read
* @param Timeout: This parameter is used for compatibility with BSP implementation
* @retval SD status
*/
uint8_t
BSP_SD_ReadBlocks(uint32_t* pData, uint32_t ReadAddr, uint32_t NumOfBlocks, uint32_t Timeout) {
UNUSED(Timeout); // FIXME!
uint32_t offset = 0;
uint32_t addr;
uint8_t retr = BSP_SD_ERROR;
SD_CmdAnswer_typedef response;
uint16_t BlockSize = 512;
uint8_t* cached_data;
bool single_sector_read = (NumOfBlocks == 1);
if(single_sector_read && (cached_data = sector_cache_get(ReadAddr))) {
memcpy(pData, cached_data, BlockSize);
return BSP_SD_OK;
}
/* Send CMD16 (SD_CMD_SET_BLOCKLEN) to set the size of the block and
Check if the SD acknowledged the set block length command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_SET_BLOCKLEN, BlockSize, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(response.r1 != SD_R1_NO_ERROR) {
goto error;
}
/* Initialize the address */
addr = (ReadAddr * ((flag_SDHC == 1) ? 1 : BlockSize));
/* Data transfer */
while(NumOfBlocks--) {
/* Send CMD17 (SD_CMD_READ_SINGLE_BLOCK) to read one block */
/* Check if the SD acknowledged the read block command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_READ_SINGLE_BLOCK, addr, 0xFF, SD_ANSWER_R1_EXPECTED);
if(response.r1 != SD_R1_NO_ERROR) {
goto error;
}
/* Now look for the data token to signify the start of the data */
if(SD_WaitData(SD_TOKEN_START_DATA_SINGLE_BLOCK_READ) == BSP_SD_OK) {
/* Read the SD block data : read NumByteToRead data */
SD_IO_WriteReadData(NULL, (uint8_t*)pData + offset, BlockSize);
/* Set next read address*/
offset += BlockSize;
addr = ((flag_SDHC == 1) ? (addr + 1) : (addr + BlockSize));
/* get CRC bytes (not really needed by us, but required by SD) */
SD_IO_WriteByte(SD_DUMMY_BYTE);
SD_IO_WriteByte(SD_DUMMY_BYTE);
} else {
goto error;
}
/* End the command data read cycle */
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
if(single_sector_read) {
sector_cache_put(ReadAddr, (uint8_t*)pData);
}
retr = BSP_SD_OK;
error:
/* Send dummy byte: 8 Clock pulses of delay */
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Return the reponse */
return retr;
}
/**
* @brief Writes block(s) to a specified address in the SD card, in polling mode.
* @param pData: Pointer to the buffer that will contain the data to transmit
* @param WriteAddr: Address from where data is to be written. The address is counted
* in blocks of 512bytes
* @param NumOfBlocks: Number of SD blocks to write
* @param Timeout: This parameter is used for compatibility with BSP implementation
* @retval SD status
*/
uint8_t BSP_SD_WriteBlocks(
uint32_t* pData,
uint32_t WriteAddr,
uint32_t NumOfBlocks,
uint32_t Timeout) {
UNUSED(Timeout); // FIXME!
uint32_t offset = 0;
uint32_t addr;
uint8_t retr = BSP_SD_ERROR;
SD_CmdAnswer_typedef response;
uint16_t BlockSize = 512;
sector_cache_invalidate_range(WriteAddr, WriteAddr + NumOfBlocks);
/* Send CMD16 (SD_CMD_SET_BLOCKLEN) to set the size of the block and
Check if the SD acknowledged the set block length command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_SET_BLOCKLEN, BlockSize, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(response.r1 != SD_R1_NO_ERROR) {
goto error;
}
/* Initialize the address */
addr = (WriteAddr * ((flag_SDHC == 1) ? 1 : BlockSize));
/* Data transfer */
while(NumOfBlocks--) {
/* Send CMD24 (SD_CMD_WRITE_SINGLE_BLOCK) to write blocks and
Check if the SD acknowledged the write block command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_WRITE_SINGLE_BLOCK, addr, 0xFF, SD_ANSWER_R1_EXPECTED);
if(response.r1 != SD_R1_NO_ERROR) {
goto error;
}
/* Send dummy byte for NWR timing : one byte between CMDWRITE and TOKEN */
SD_IO_WriteByte(SD_DUMMY_BYTE);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Send the data token to signify the start of the data */
SD_IO_WriteByte(SD_TOKEN_START_DATA_SINGLE_BLOCK_WRITE);
/* Write the block data to SD */
SD_IO_WriteReadData((uint8_t*)pData + offset, NULL, BlockSize);
/* Set next write address */
offset += BlockSize;
addr = ((flag_SDHC == 1) ? (addr + 1) : (addr + BlockSize));
/* Put CRC bytes (not really needed by us, but required by SD) */
SD_IO_WriteByte(SD_DUMMY_BYTE);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Read data response */
if(SD_GetDataResponse() != SD_DATA_OK) {
/* Set response value to failure */
goto error;
}
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
retr = BSP_SD_OK;
error:
/* Send dummy byte: 8 Clock pulses of delay */
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Return the reponse */
return retr;
}
/**
* @brief Erases the specified memory area of the given SD card.
* @param StartAddr: Start address in Blocks (Size of a block is 512bytes)
* @param EndAddr: End address in Blocks (Size of a block is 512bytes)
* @retval SD status
*/
uint8_t BSP_SD_Erase(uint32_t StartAddr, uint32_t EndAddr) {
uint8_t retr = BSP_SD_ERROR;
SD_CmdAnswer_typedef response;
uint16_t BlockSize = 512;
/* Send CMD32 (Erase group start) and check if the SD acknowledged the erase command: R1 response (0x00: no errors) */
response = SD_SendCmd(
SD_CMD_SD_ERASE_GRP_START,
(StartAddr) * (flag_SDHC == 1 ? 1 : BlockSize),
0xFF,
SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(response.r1 == SD_R1_NO_ERROR) {
/* Send CMD33 (Erase group end) and Check if the SD acknowledged the erase command: R1 response (0x00: no errors) */
response = SD_SendCmd(
SD_CMD_SD_ERASE_GRP_END,
(EndAddr * 512) * (flag_SDHC == 1 ? 1 : BlockSize),
0xFF,
SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(response.r1 == SD_R1_NO_ERROR) {
/* Send CMD38 (Erase) and Check if the SD acknowledged the erase command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_ERASE, 0, 0xFF, SD_ANSWER_R1B_EXPECTED);
if(response.r1 == SD_R1_NO_ERROR) {
retr = BSP_SD_OK;
}
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
}
}
/* Return the reponse */
return retr;
}
/**
* @brief Returns the SD status.
* @param None
* @retval The SD status.
*/
uint8_t BSP_SD_GetCardState(void) {
SD_CmdAnswer_typedef retr;
/* Send CMD13 (SD_SEND_STATUS) to get SD status */
retr = SD_SendCmd(SD_CMD_SEND_STATUS, 0, 0xFF, SD_ANSWER_R2_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Find SD status according to card state */
if((retr.r1 == SD_R1_NO_ERROR) && (retr.r2 == SD_R2_NO_ERROR)) {
return BSP_SD_OK;
}
return BSP_SD_ERROR;
}
/**
* @brief Reads the SD card SCD register.
* Reading the contents of the CSD register in SPI mode is a simple
* read-block transaction.
* @param Csd: pointer on an SCD register structure
* @retval SD status
*/
uint8_t SD_GetCSDRegister(SD_CSD* Csd) {
uint16_t counter = 0;
uint8_t CSD_Tab[16];
uint8_t retr = BSP_SD_ERROR;
SD_CmdAnswer_typedef response;
/* Send CMD9 (CSD register) or CMD10(CSD register) and Wait for response in the R1 format (0x00 is no errors) */
response = SD_SendCmd(SD_CMD_SEND_CSD, 0, 0xFF, SD_ANSWER_R1_EXPECTED);
if(response.r1 == SD_R1_NO_ERROR) {
if(SD_WaitData(SD_TOKEN_START_DATA_SINGLE_BLOCK_READ) == BSP_SD_OK) {
for(counter = 0; counter < 16; counter++) {
/* Store CSD register value on CSD_Tab */
CSD_Tab[counter] = SD_IO_WriteByte(SD_DUMMY_BYTE);
}
/* Get CRC bytes (not really needed by us, but required by SD) */
SD_IO_WriteByte(SD_DUMMY_BYTE);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/*************************************************************************
CSD header decoding
*************************************************************************/
/* Byte 0 */
Csd->CSDStruct = (CSD_Tab[0] & 0xC0) >> 6;
Csd->Reserved1 = CSD_Tab[0] & 0x3F;
/* Byte 1 */
Csd->TAAC = CSD_Tab[1];
/* Byte 2 */
Csd->NSAC = CSD_Tab[2];
/* Byte 3 */
Csd->MaxBusClkFrec = CSD_Tab[3];
/* Byte 4/5 */
Csd->CardComdClasses = (CSD_Tab[4] << 4) | ((CSD_Tab[5] & 0xF0) >> 4);
Csd->RdBlockLen = CSD_Tab[5] & 0x0F;
/* Byte 6 */
Csd->PartBlockRead = (CSD_Tab[6] & 0x80) >> 7;
Csd->WrBlockMisalign = (CSD_Tab[6] & 0x40) >> 6;
Csd->RdBlockMisalign = (CSD_Tab[6] & 0x20) >> 5;
Csd->DSRImpl = (CSD_Tab[6] & 0x10) >> 4;
/*************************************************************************
CSD v1/v2 decoding
*************************************************************************/
if(flag_SDHC == 0) {
Csd->version.v1.Reserved1 = ((CSD_Tab[6] & 0x0C) >> 2);
Csd->version.v1.DeviceSize = ((CSD_Tab[6] & 0x03) << 10) | (CSD_Tab[7] << 2) |
((CSD_Tab[8] & 0xC0) >> 6);
Csd->version.v1.MaxRdCurrentVDDMin = (CSD_Tab[8] & 0x38) >> 3;
Csd->version.v1.MaxRdCurrentVDDMax = (CSD_Tab[8] & 0x07);
Csd->version.v1.MaxWrCurrentVDDMin = (CSD_Tab[9] & 0xE0) >> 5;
Csd->version.v1.MaxWrCurrentVDDMax = (CSD_Tab[9] & 0x1C) >> 2;
Csd->version.v1.DeviceSizeMul = ((CSD_Tab[9] & 0x03) << 1) |
((CSD_Tab[10] & 0x80) >> 7);
} else {
Csd->version.v2.Reserved1 = ((CSD_Tab[6] & 0x0F) << 2) |
((CSD_Tab[7] & 0xC0) >> 6);
Csd->version.v2.DeviceSize = ((CSD_Tab[7] & 0x3F) << 16) | (CSD_Tab[8] << 8) |
CSD_Tab[9];
Csd->version.v2.Reserved2 = ((CSD_Tab[10] & 0x80) >> 8);
}
Csd->EraseSingleBlockEnable = (CSD_Tab[10] & 0x40) >> 6;
Csd->EraseSectorSize = ((CSD_Tab[10] & 0x3F) << 1) | ((CSD_Tab[11] & 0x80) >> 7);
Csd->WrProtectGrSize = (CSD_Tab[11] & 0x7F);
Csd->WrProtectGrEnable = (CSD_Tab[12] & 0x80) >> 7;
Csd->Reserved2 = (CSD_Tab[12] & 0x60) >> 5;
Csd->WrSpeedFact = (CSD_Tab[12] & 0x1C) >> 2;
Csd->MaxWrBlockLen = ((CSD_Tab[12] & 0x03) << 2) | ((CSD_Tab[13] & 0xC0) >> 6);
Csd->WriteBlockPartial = (CSD_Tab[13] & 0x20) >> 5;
Csd->Reserved3 = (CSD_Tab[13] & 0x1F);
Csd->FileFormatGrouop = (CSD_Tab[14] & 0x80) >> 7;
Csd->CopyFlag = (CSD_Tab[14] & 0x40) >> 6;
Csd->PermWrProtect = (CSD_Tab[14] & 0x20) >> 5;
Csd->TempWrProtect = (CSD_Tab[14] & 0x10) >> 4;
Csd->FileFormat = (CSD_Tab[14] & 0x0C) >> 2;
Csd->Reserved4 = (CSD_Tab[14] & 0x03);
Csd->crc = (CSD_Tab[15] & 0xFE) >> 1;
Csd->Reserved5 = (CSD_Tab[15] & 0x01);
retr = BSP_SD_OK;
}
}
/* Send dummy byte: 8 Clock pulses of delay */
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Return the reponse */
return retr;
}
/**
* @brief Reads the SD card CID register.
* Reading the contents of the CID register in SPI mode is a simple
* read-block transaction.
* @param Cid: pointer on an CID register structure
* @retval SD status
*/
uint8_t SD_GetCIDRegister(SD_CID* Cid) {
uint32_t counter = 0;
uint8_t retr = BSP_SD_ERROR;
uint8_t CID_Tab[16];
SD_CmdAnswer_typedef response;
/* Send CMD10 (CID register) and Wait for response in the R1 format (0x00 is no errors) */
response = SD_SendCmd(SD_CMD_SEND_CID, 0, 0xFF, SD_ANSWER_R1_EXPECTED);
if(response.r1 == SD_R1_NO_ERROR) {
if(SD_WaitData(SD_TOKEN_START_DATA_SINGLE_BLOCK_READ) == BSP_SD_OK) {
/* Store CID register value on CID_Tab */
for(counter = 0; counter < 16; counter++) {
CID_Tab[counter] = SD_IO_WriteByte(SD_DUMMY_BYTE);
}
/* Get CRC bytes (not really needed by us, but required by SD) */
SD_IO_WriteByte(SD_DUMMY_BYTE);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Byte 0 */
Cid->ManufacturerID = CID_Tab[0];
/* Byte 1 */
memcpy(Cid->OEM_AppliID, CID_Tab + 1, 2);
/* Byte 3 */
memcpy(Cid->ProdName, CID_Tab + 3, 5);
/* Byte 8 */
Cid->ProdRev = CID_Tab[8];
/* Byte 9 */
Cid->ProdSN = CID_Tab[9] << 24;
/* Byte 10 */
Cid->ProdSN |= CID_Tab[10] << 16;
/* Byte 11 */
Cid->ProdSN |= CID_Tab[11] << 8;
/* Byte 12 */
Cid->ProdSN |= CID_Tab[12];
/* Byte 13 */
Cid->Reserved1 = (CID_Tab[13] & 0xF0) >> 4;
Cid->ManufactYear = (CID_Tab[13] & 0x0F) << 4;
/* Byte 14 */
Cid->ManufactYear |= (CID_Tab[14] & 0xF0) >> 4;
Cid->ManufactMonth = (CID_Tab[14] & 0x0F);
/* Byte 15 */
Cid->CID_CRC = (CID_Tab[15] & 0xFE) >> 1;
Cid->Reserved2 = 1;
retr = BSP_SD_OK;
}
}
/* Send dummy byte: 8 Clock pulses of delay */
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Return the reponse */
return retr;
}
uint8_t BSP_SD_GetCIDRegister(SD_CID* Cid) {
uint8_t retr = BSP_SD_ERROR;
/* Slow speed init */
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_sd_slow);
furi_hal_sd_spi_handle = &furi_hal_spi_bus_handle_sd_slow;
memset(Cid, 0, sizeof(SD_CID));
retr = SD_GetCIDRegister(Cid);
furi_hal_sd_spi_handle = NULL;
furi_hal_spi_release(&furi_hal_spi_bus_handle_sd_slow);
return retr;
}
/**
* @brief Sends 5 bytes command to the SD card and get response
* @param Cmd: The user expected command to send to SD card.
* @param Arg: The command argument.
* @param Crc: The CRC.
* @param Answer: SD_ANSWER_NOT_EXPECTED or SD_ANSWER_EXPECTED
* @retval SD status
*/
SD_CmdAnswer_typedef SD_SendCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc, uint8_t Answer) {
uint8_t frame[SD_CMD_LENGTH], frameout[SD_CMD_LENGTH];
SD_CmdAnswer_typedef retr = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/* R1 Lenght = NCS(0)+ 6 Bytes command + NCR(min1 max8) + 1 Bytes answer + NEC(0) = 15bytes */
/* R1b identical to R1 + Busy information */
/* R2 Lenght = NCS(0)+ 6 Bytes command + NCR(min1 max8) + 2 Bytes answer + NEC(0) = 16bytes */
/* Prepare Frame to send */
frame[0] = (Cmd | 0x40); /* Construct byte 1 */
frame[1] = (uint8_t)(Arg >> 24); /* Construct byte 2 */
frame[2] = (uint8_t)(Arg >> 16); /* Construct byte 3 */
frame[3] = (uint8_t)(Arg >> 8); /* Construct byte 4 */
frame[4] = (uint8_t)(Arg); /* Construct byte 5 */
frame[5] = (Crc | 0x01); /* Construct byte 6 */
/* Send the command */
SD_IO_CSState(0);
SD_IO_WriteReadData(frame, frameout, SD_CMD_LENGTH); /* Send the Cmd bytes */
switch(Answer) {
case SD_ANSWER_R1_EXPECTED:
retr.r1 = SD_ReadData();
break;
case SD_ANSWER_R1B_EXPECTED:
retr.r1 = SD_ReadData();
retr.r2 = SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Set CS High */
SD_IO_CSState(1);
furi_delay_us(1000);
/* Set CS Low */
SD_IO_CSState(0);
/* Wait IO line return 0xFF */
while(SD_IO_WriteByte(SD_DUMMY_BYTE) != 0xFF)
;
break;
case SD_ANSWER_R2_EXPECTED:
retr.r1 = SD_ReadData();
retr.r2 = SD_IO_WriteByte(SD_DUMMY_BYTE);
break;
case SD_ANSWER_R3_EXPECTED:
case SD_ANSWER_R7_EXPECTED:
retr.r1 = SD_ReadData();
retr.r2 = SD_IO_WriteByte(SD_DUMMY_BYTE);
retr.r3 = SD_IO_WriteByte(SD_DUMMY_BYTE);
retr.r4 = SD_IO_WriteByte(SD_DUMMY_BYTE);
retr.r5 = SD_IO_WriteByte(SD_DUMMY_BYTE);
break;
default:
break;
}
return retr;
}
/**
* @brief Gets the SD card data response and check the busy flag.
* @param None
* @retval The SD status: Read data response xxx0<status>1
* - status 010: Data accecpted
* - status 101: Data rejected due to a crc error
* - status 110: Data rejected due to a Write error.
* - status 111: Data rejected due to other error.
*/
uint8_t SD_GetDataResponse(void) {
uint8_t dataresponse;
uint8_t rvalue = SD_DATA_OTHER_ERROR;
dataresponse = SD_IO_WriteByte(SD_DUMMY_BYTE);
SD_IO_WriteByte(SD_DUMMY_BYTE); /* read the busy response byte*/
/* Mask unused bits */
switch(dataresponse & 0x1F) {
case SD_DATA_OK:
rvalue = SD_DATA_OK;
/* Set CS High */
SD_IO_CSState(1);
/* Set CS Low */
SD_IO_CSState(0);
/* Wait IO line return 0xFF */
while(SD_IO_WriteByte(SD_DUMMY_BYTE) != 0xFF)
;
break;
case SD_DATA_CRC_ERROR:
rvalue = SD_DATA_CRC_ERROR;
break;
case SD_DATA_WRITE_ERROR:
rvalue = SD_DATA_WRITE_ERROR;
break;
default:
break;
}
/* Return response */
return rvalue;
}
/**
* @brief Put the SD in Idle state.
* @param None
* @retval SD status
*/
uint8_t SD_GoIdleState(void) {
SD_CmdAnswer_typedef response;
__IO uint8_t counter;
/* Send CMD0 (SD_CMD_GO_IDLE_STATE) to put SD in SPI mode and
wait for In Idle State Response (R1 Format) equal to 0x01 */
counter = 0;
do {
counter++;
response = SD_SendCmd(SD_CMD_GO_IDLE_STATE, 0, 0x95, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(counter >= SD_MAX_TRY) {
return BSP_SD_ERROR;
}
} while(response.r1 != SD_R1_IN_IDLE_STATE);
/* Send CMD8 (SD_CMD_SEND_IF_COND) to check the power supply status
and wait until response (R7 Format) equal to 0xAA and */
response = SD_SendCmd(SD_CMD_SEND_IF_COND, 0x1AA, 0x87, SD_ANSWER_R7_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if((response.r1 & SD_R1_ILLEGAL_COMMAND) == SD_R1_ILLEGAL_COMMAND) {
/* initialise card V1 */
counter = 0;
do {
counter++;
/* initialise card V1 */
/* Send CMD55 (SD_CMD_APP_CMD) before any ACMD command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_APP_CMD, 0x00000000, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Send ACMD41 (SD_CMD_SD_APP_OP_COND) to initialize SDHC or SDXC cards: R1 response (0x00: no errors) */
response = //-V519
SD_SendCmd(SD_CMD_SD_APP_OP_COND, 0x00000000, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(counter >= SD_MAX_TRY) {
return BSP_SD_ERROR;
}
} while(response.r1 == SD_R1_IN_IDLE_STATE);
flag_SDHC = 0;
} else if(response.r1 == SD_R1_IN_IDLE_STATE) {
/* initialise card V2 */
counter = 0;
do {
counter++;
/* Send CMD55 (SD_CMD_APP_CMD) before any ACMD command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_APP_CMD, 0, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
/* Send ACMD41 (SD_CMD_SD_APP_OP_COND) to initialize SDHC or SDXC cards: R1 response (0x00: no errors) */
response = //-V519
SD_SendCmd(SD_CMD_SD_APP_OP_COND, 0x40000000, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(counter >= SD_MAX_TRY) {
return BSP_SD_ERROR;
}
} while(response.r1 == SD_R1_IN_IDLE_STATE);
if((response.r1 & SD_R1_ILLEGAL_COMMAND) == SD_R1_ILLEGAL_COMMAND) {
counter = 0;
do {
counter++;
/* Send CMD55 (SD_CMD_APP_CMD) before any ACMD command: R1 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_APP_CMD, 0, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(response.r1 != SD_R1_IN_IDLE_STATE) {
return BSP_SD_ERROR;
}
/* Send ACMD41 (SD_CMD_SD_APP_OP_COND) to initialize SDHC or SDXC cards: R1 response (0x00: no errors) */
response =
SD_SendCmd(SD_CMD_SD_APP_OP_COND, 0x00000000, 0xFF, SD_ANSWER_R1_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(counter >= SD_MAX_TRY) {
return BSP_SD_ERROR;
}
} while(response.r1 == SD_R1_IN_IDLE_STATE);
}
/* Send CMD58 (SD_CMD_READ_OCR) to initialize SDHC or SDXC cards: R3 response (0x00: no errors) */
response = SD_SendCmd(SD_CMD_READ_OCR, 0x00000000, 0xFF, SD_ANSWER_R3_EXPECTED);
SD_IO_CSState(1);
SD_IO_WriteByte(SD_DUMMY_BYTE);
if(response.r1 != SD_R1_NO_ERROR) {
return BSP_SD_ERROR;
}
flag_SDHC = (response.r2 & 0x40) >> 6;
} else {
return BSP_SD_ERROR;
}
return BSP_SD_OK;
}
/**
* @brief Waits a data until a value different from SD_DUMMY_BITE
* @param None
* @retval the value read
*/
uint8_t SD_ReadData(void) {
uint8_t timeout = 0x08;
uint8_t readvalue;
/* Check if response is got or a timeout is happen */
do {
readvalue = SD_IO_WriteByte(SD_DUMMY_BYTE);
timeout--;
} while((readvalue == SD_DUMMY_BYTE) && timeout);
/* Right response got */
return readvalue;
}
/**
* @brief Waits a data from the SD card
* @param data : Expected data from the SD card
* @retval BSP_SD_OK or BSP_SD_TIMEOUT
*/
uint8_t SD_WaitData(uint8_t data) {
uint16_t timeout = 0xFFFF;
uint8_t readvalue;
/* Check if response is got or a timeout is happen */
do {
readvalue = SD_IO_WriteByte(SD_DUMMY_BYTE);
timeout--;
} while((readvalue != data) && timeout);
if(timeout == 0) {
/* After time out */
return BSP_SD_TIMEOUT;
}
/* Right response got */
return BSP_SD_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/