flipperzero-firmware/lib/cyfral/cyfral_reader_comp.h
DrZlo13 cf1c8fb223
[FL-85][FL-446][FL-720] Dallas key blanks and OneWire lib rework (#313)
* sepate one wire class
* TM2004 writer
* app mode write ds1990
* test another blanks protocol
* new ibutton slave
* one wire states
* tim1 capture compare and update interrupts
* interrupt mgr, new timers IRQ
* discard HAL_TIM_PeriodElapsedCallback from main
* add exti_14 line
* add external interrupt callback
* use int mgr in input
* better interrupt managment
* add interrupt callback enable and disable fns
* properly init app
* changed timings
* rename one wire classes
* use new owb classes
* properly remove interrupts
* new blanks writer
* remove unused tests
* new core includes
* extern c guard
* fix api_interrupt_remove usage
* remove debug info, new way to detect blanks writing
* remove copy constructor
* change keys template
* fix app sources recipe
2021-01-28 15:30:31 +03:00

282 lines
8.3 KiB
C++

#pragma once
#include <furi.h>
#include "callback-connector.h"
#include <atomic>
enum class CyfralReaderCompError : uint8_t {
NO_ERROR = 0,
UNABLE_TO_DETECT = 1,
RAW_DATA_SIZE_ERROR = 2,
UNKNOWN_NIBBLE_VALUE = 3,
NO_START_NIBBLE = 4,
NOT_ENOUGH_DATA = 5,
};
extern COMP_HandleTypeDef hcomp1;
typedef struct {
bool value;
uint32_t dwt_value;
} CompEvent;
class CyfralReaderComp {
private:
bool capture_data(bool* data, uint16_t capture_size);
bool parse_data(bool* raw_data, uint16_t capture_size, uint8_t* data, uint8_t count);
uint32_t search_array_in_array(
const bool* haystack,
const uint32_t haystack_size,
const bool* needle,
const uint32_t needle_size);
// key is 9 nibbles
static const uint16_t bits_in_nibble = 4;
static const uint16_t key_length = 9;
static const uint32_t capture_size = key_length * bits_in_nibble * 2;
CyfralReaderCompError error;
const GpioPin* pin_record;
std::atomic<bool> ready_to_process;
void comparator_trigger_callback(void* hcomp, void* comp_ctx);
osMessageQueueId_t comp_event_queue;
public:
CyfralReaderComp(const GpioPin* emulate_pin);
~CyfralReaderComp();
void start(void);
void stop(void);
bool read(uint8_t* data, uint8_t count);
};
bool CyfralReaderComp::capture_data(bool* data, uint16_t capture_size) {
uint32_t prev_timing = 0;
uint16_t data_index = 0;
CompEvent event_0, event_1;
osStatus_t status;
// read first event to get initial timing
status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
if(status != osOK) {
return false;
}
prev_timing = event_0.dwt_value;
// read second event until we get 0
while(1) {
status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
if(status != osOK) {
return false;
}
prev_timing = event_0.dwt_value;
if(event_0.value == 0) break;
}
while(1) {
// if event "zero" correct
if(status == osOK && event_0.value == 0) {
// get timing
event_0.dwt_value -= prev_timing;
prev_timing += event_0.dwt_value;
// read next event
status = osMessageQueueGet(comp_event_queue, &event_1, NULL, 0);
// if event "one" correct
if(status == osOK && event_1.value == 1) {
// get timing
event_1.dwt_value -= prev_timing;
prev_timing += event_1.dwt_value;
// calculate percentage of event "one" to full timing
uint32_t full_timing = event_0.dwt_value + event_1.dwt_value;
uint32_t percentage_1 = 1000000 / full_timing * event_1.dwt_value;
// write captured data
data[data_index] = percentage_1 > 500000 ? 0 : 1;
data_index++;
if(data_index >= capture_size) return true;
status = osMessageQueueGet(comp_event_queue, &event_0, NULL, 0);
} else {
return false;
}
} else {
return false;
}
}
osMessageQueueReset(comp_event_queue);
}
uint32_t CyfralReaderComp::search_array_in_array(
const bool* haystack,
const uint32_t haystack_size,
const bool* needle,
const uint32_t needle_size) {
uint32_t haystack_index = 0, needle_index = 0;
while(haystack_index < haystack_size && needle_index < needle_size) {
if(haystack[haystack_index] == needle[needle_index]) {
haystack_index++;
needle_index++;
if(needle_index == needle_size) {
return (haystack_index - needle_size);
};
} else {
haystack_index = haystack_index - needle_index + 1;
needle_index = 0;
}
}
return haystack_index;
}
void CyfralReaderComp::comparator_trigger_callback(void* hcomp, void* comp_ctx) {
CyfralReaderComp* _this = static_cast<CyfralReaderComp*>(comp_ctx);
COMP_HandleTypeDef* _hcomp = static_cast<COMP_HandleTypeDef*>(hcomp);
// check that hw is comparator 1
if(_hcomp != &hcomp1) return;
// if queue if not full
if(_this->ready_to_process == false) {
// send event to queue
CompEvent event;
event.value = (HAL_COMP_GetOutputLevel(_hcomp) == COMP_OUTPUT_LEVEL_HIGH);
event.dwt_value = DWT->CYCCNT;
osStatus_t status = osMessageQueuePut(_this->comp_event_queue, &event, 0, 0);
// queue is full, so we need to process data
if(status != osOK) {
_this->ready_to_process = true;
};
}
}
bool CyfralReaderComp::parse_data(
bool* raw_data,
uint16_t capture_size,
uint8_t* data,
uint8_t count) {
const bool start_nibble[bits_in_nibble] = {1, 1, 1, 0};
uint32_t start_position =
search_array_in_array(raw_data, capture_size, start_nibble, bits_in_nibble);
uint32_t end_position = 0;
memset(data, 0, count);
if(start_position < capture_size) {
start_position = start_position + bits_in_nibble;
end_position = start_position + count * 2 * bits_in_nibble;
if(end_position >= capture_size) {
error = CyfralReaderCompError::RAW_DATA_SIZE_ERROR;
return false;
}
bool first_nibble = true;
uint8_t data_position = 0;
uint8_t nibble_value = 0;
while(data_position < count) {
nibble_value = !raw_data[start_position] << 3 | !raw_data[start_position + 1] << 2 |
!raw_data[start_position + 2] << 1 | !raw_data[start_position + 3];
switch(nibble_value) {
case(0x7):
case(0xB):
case(0xD):
case(0xE):
break;
default:
error = CyfralReaderCompError::UNKNOWN_NIBBLE_VALUE;
return false;
break;
}
if(first_nibble) {
data[data_position] |= nibble_value << 4;
} else {
data[data_position] |= nibble_value;
}
first_nibble = !first_nibble;
if(first_nibble) {
data_position++;
}
start_position = start_position + bits_in_nibble;
}
error = CyfralReaderCompError::NO_ERROR;
return true;
}
error = CyfralReaderCompError::NO_START_NIBBLE;
return false;
}
CyfralReaderComp::CyfralReaderComp(const GpioPin* gpio_pin) {
pin_record = gpio_pin;
}
CyfralReaderComp::~CyfralReaderComp() {
}
void CyfralReaderComp::start(void) {
// pulldown lf-rfid pins to prevent interference
// TODO open record
GpioPin rfid_pull_pin = {.port = RFID_PULL_GPIO_Port, .pin = RFID_PULL_Pin};
gpio_init((GpioPin*)&rfid_pull_pin, GpioModeOutputOpenDrain);
gpio_write((GpioPin*)&rfid_pull_pin, false);
// TODO open record
GpioPin rfid_out_pin = {.port = RFID_OUT_GPIO_Port, .pin = RFID_OUT_Pin};
gpio_init((GpioPin*)&rfid_out_pin, GpioModeOutputOpenDrain);
gpio_write((GpioPin*)&rfid_out_pin, false);
// connect comparator callback
void* comp_ctx = this;
comp_event_queue = osMessageQueueNew(capture_size * 2 + 2, sizeof(CompEvent), NULL);
ready_to_process = false;
auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
api_interrupt_add(cmp_cb, InterruptTypeComparatorTrigger, comp_ctx);
// start comaparator
HAL_COMP_Start(&hcomp1);
}
void CyfralReaderComp::stop(void) {
// stop comaparator
HAL_COMP_Stop(&hcomp1);
// disconnect comparator callback
auto cmp_cb = cbc::obtain_connector(this, &CyfralReaderComp::comparator_trigger_callback);
api_interrupt_remove(cmp_cb, InterruptTypeComparatorTrigger);
osMessageQueueDelete(comp_event_queue);
}
bool CyfralReaderComp::read(uint8_t* data, uint8_t count) {
bool raw_data[capture_size];
bool result = false;
error = CyfralReaderCompError::NO_ERROR;
if(ready_to_process == false) {
error = CyfralReaderCompError::NOT_ENOUGH_DATA;
} else {
memset(raw_data, 0, sizeof(bool) * capture_size);
if(capture_data(raw_data, capture_size)) {
if(parse_data(raw_data, capture_size, data, count)) {
result = true;
}
}
ready_to_process = false;
}
return result;
}