flipperzero-firmware/lib/subghz/protocols/linear.c
Skorpionm ec19c11dbe
[FL-2669] SubGhz: add support for loading custom presets (#1398)
* SubGhz: load custom -preset
* SubGhz: fix error prt=0
* SubGhz: load custom preset
* SubGhz: code refactoring to support custom preset
* SubGhz: add custom presert refactoring
* SubGhz: fix alloc history alloc preset
* SubGhz: fix error load file
* SubGhz: fix start custom preset
* SubGhz: fix delete custom preset
* SubGhz: add description Custom_preset_data for CC1101
* SubGhz: debug logging and buffer size rounding

Co-authored-by: あく <alleteam@gmail.com>
Co-authored-by: Aleksandr Kutuzov <aku@plooks.com>
2022-07-26 23:16:59 +09:00

337 lines
12 KiB
C

#include "linear.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolLinear"
#define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
#define DATA_TO_DIP(dip) \
(dip & 0x0200 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \
(dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \
(dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \
(dip & 0x0001 ? '1' : '0')
static const SubGhzBlockConst subghz_protocol_linear_const = {
.te_short = 500,
.te_long = 1500,
.te_delta = 150,
.min_count_bit_for_found = 10,
};
struct SubGhzProtocolDecoderLinear {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderLinear {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
LinearDecoderStepReset = 0,
LinearDecoderStepSaveDuration,
LinearDecoderStepCheckDuration,
} LinearDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_linear_decoder = {
.alloc = subghz_protocol_decoder_linear_alloc,
.free = subghz_protocol_decoder_linear_free,
.feed = subghz_protocol_decoder_linear_feed,
.reset = subghz_protocol_decoder_linear_reset,
.get_hash_data = subghz_protocol_decoder_linear_get_hash_data,
.serialize = subghz_protocol_decoder_linear_serialize,
.deserialize = subghz_protocol_decoder_linear_deserialize,
.get_string = subghz_protocol_decoder_linear_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_linear_encoder = {
.alloc = subghz_protocol_encoder_linear_alloc,
.free = subghz_protocol_encoder_linear_free,
.deserialize = subghz_protocol_encoder_linear_deserialize,
.stop = subghz_protocol_encoder_linear_stop,
.yield = subghz_protocol_encoder_linear_yield,
};
const SubGhzProtocol subghz_protocol_linear = {
.name = SUBGHZ_PROTOCOL_LINEAR_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_linear_decoder,
.encoder = &subghz_protocol_linear_encoder,
};
void* subghz_protocol_encoder_linear_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderLinear* instance = malloc(sizeof(SubGhzProtocolEncoderLinear));
instance->base.protocol = &subghz_protocol_linear;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 28; //max 10bit*2 + 2 (start, stop)
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_runing = false;
return instance;
}
void subghz_protocol_encoder_linear_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderLinear* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderLinear instance
* @return true On success
*/
static bool subghz_protocol_encoder_linear_get_upload(SubGhzProtocolEncoderLinear* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 3);
}
}
//Send end bit
if(bit_read(instance->generic.data, 0)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3);
//Send PT_GUARD
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 42);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short);
//Send PT_GUARD
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 44);
}
return true;
}
bool subghz_protocol_encoder_linear_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderLinear* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_linear_get_upload(instance);
instance->encoder.is_runing = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_linear_stop(void* context) {
SubGhzProtocolEncoderLinear* instance = context;
instance->encoder.is_runing = false;
}
LevelDuration subghz_protocol_encoder_linear_yield(void* context) {
SubGhzProtocolEncoderLinear* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) {
instance->encoder.is_runing = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_linear_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderLinear* instance = malloc(sizeof(SubGhzProtocolDecoderLinear));
instance->base.protocol = &subghz_protocol_linear;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_linear_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
free(instance);
}
void subghz_protocol_decoder_linear_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
instance->decoder.parser_step = LinearDecoderStepReset;
}
void subghz_protocol_decoder_linear_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
switch(instance->decoder.parser_step) {
case LinearDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) <
subghz_protocol_linear_const.te_delta * 20)) {
//Found header Linear
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.parser_step = LinearDecoderStepSaveDuration;
}
break;
case LinearDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = LinearDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = LinearDecoderStepReset;
}
break;
case LinearDecoderStepCheckDuration:
if(!level) { //save interval
if(duration >= (subghz_protocol_linear_const.te_short * 5)) {
instance->decoder.parser_step = LinearDecoderStepReset;
//checking that the duration matches the guardtime
if((DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) >
subghz_protocol_linear_const.te_delta * 20)) {
break;
}
if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) <
subghz_protocol_linear_const.te_delta) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else if(
DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) <
subghz_protocol_linear_const.te_delta) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
}
if(instance->decoder.decode_count_bit ==
subghz_protocol_linear_const.min_count_bit_for_found) {
instance->generic.serial = 0x0;
instance->generic.btn = 0x0;
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
break;
}
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) <
subghz_protocol_linear_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_linear_const.te_long) <
subghz_protocol_linear_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = LinearDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) <
subghz_protocol_linear_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_linear_const.te_short) <
subghz_protocol_linear_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = LinearDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = LinearDecoderStepReset;
}
} else {
instance->decoder.parser_step = LinearDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_linear_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_linear_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPesetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_linear_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
return subghz_block_generic_deserialize(&instance->generic, flipper_format);
}
void subghz_protocol_decoder_linear_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"DIP:" DIP_PATTERN "\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_lo,
code_found_reverse_lo,
DATA_TO_DIP(code_found_lo));
}