flipperzero-firmware/firmware/targets/f6/furi-hal/furi-hal-rfid.c
tonyfreeman 69f54973cc
Nfc: fix incorrect type castings. Global: fix printf usage, types casting, overall cleanup. Drivers: incorrect array index in cc1101 driver. (#713)
* fix 'function cannot return qualified void/bool type'
* Fix variable 'consumed' is used uninitialized
* Fix format string is not a string literal (potentially insecure)
* Fix conflicting types for 'menu_item_get_type'
* Fix implicit conversion from enumeration type 'NfcDeviceType' to different enumeration type 'rfalNfcDevType'
* Fix hal_gpio_init incorrect arguments order
* Fix nfc->dev.dev_name condition will always evaluate to 'true'
* Fix explicitly assigning value of variable to itself
* Fix furi_hal_bt_wait_startup counter overflow
* Fix implicit conversion from 'StorageStatus' to 'SDError'
* Remove #include <sys/param.h>
* Add FIXME
* Fix syntax
* Fixup for 'furi_hal_bt_wait_startup counter overflow'
* nfc: fix different nfc device types
* Drivers: fix incorrect offset in cc1101_read_fifo
* Remove obsolete comment

Co-authored-by: Tony Freeman <tonyfreeman@users.noreply.github.com>
Co-authored-by: gornekich <n.gorbadey@gmail.com>
Co-authored-by: あく <alleteam@gmail.com>
2021-09-21 12:34:16 +03:00

289 lines
9.8 KiB
C

#include <furi-hal-rfid.h>
#include <furi-hal-ibutton.h>
#include <furi-hal-resources.h>
#include <stm32wbxx_ll_tim.h>
#define LFRFID_READ_TIM htim1
#define LFRFID_READ_CHANNEL TIM_CHANNEL_1
#define LFRFID_EMULATE_TIM htim2
#define LFRFID_EMULATE_CHANNEL TIM_CHANNEL_3
void furi_hal_rfid_init() {
furi_hal_rfid_pins_reset();
}
void furi_hal_rfid_pins_reset() {
// ibutton bus disable
furi_hal_ibutton_stop();
// pulldown rfid antenna
hal_gpio_init(&gpio_rfid_carrier_out, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
hal_gpio_write(&gpio_rfid_carrier_out, false);
// from both sides
hal_gpio_init(&gpio_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
hal_gpio_write(&gpio_rfid_pull, true);
}
void furi_hal_rfid_pins_emulate() {
// ibutton low
furi_hal_ibutton_start();
furi_hal_ibutton_pin_low();
// pull pin to timer out
hal_gpio_init_ex(
&gpio_rfid_pull, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
// pull rfid antenna from carrier side
hal_gpio_init(&gpio_rfid_carrier_out, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
hal_gpio_write(&gpio_rfid_carrier_out, false);
}
void furi_hal_rfid_pins_read() {
// ibutton low
furi_hal_ibutton_start();
furi_hal_ibutton_pin_low();
// dont pull rfid antenna
hal_gpio_init(&gpio_rfid_pull, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
hal_gpio_write(&gpio_rfid_pull, false);
// carrier pin to timer out
hal_gpio_init_ex(
&gpio_rfid_carrier_out,
GpioModeAltFunctionPushPull,
GpioPullNo,
GpioSpeedLow,
GpioAltFn1TIM1);
// comparator in
hal_gpio_init(&gpio_rfid_data_in, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
void furi_hal_rfid_tim_read(float freq, float duty_cycle) {
// TODO LL init
uint32_t period = (uint32_t)((SystemCoreClock) / freq) - 1;
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
// basic PWM setup with needed freq and internal clock
LFRFID_READ_TIM.Init.Prescaler = 0;
LFRFID_READ_TIM.Init.CounterMode = TIM_COUNTERMODE_UP;
LFRFID_READ_TIM.Init.Period = period;
LFRFID_READ_TIM.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
LFRFID_READ_TIM.Init.RepetitionCounter = 0;
LFRFID_READ_TIM.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if(HAL_TIM_Base_Init(&LFRFID_READ_TIM) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if(HAL_TIM_ConfigClockSource(&LFRFID_READ_TIM, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
if(HAL_TIM_PWM_Init(&LFRFID_READ_TIM) != HAL_OK) {
Error_Handler();
}
// no master-slave mode
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if(HAL_TIMEx_MasterConfigSynchronization(&LFRFID_READ_TIM, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
// pwm config
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = (uint32_t)(LFRFID_READ_TIM.Init.Period * duty_cycle);
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if(HAL_TIM_OC_ConfigChannel(&LFRFID_READ_TIM, &sConfigOC, LFRFID_READ_CHANNEL) != HAL_OK) {
Error_Handler();
}
// no deadtime
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if(HAL_TIMEx_ConfigBreakDeadTime(&LFRFID_READ_TIM, &sBreakDeadTimeConfig) != HAL_OK) {
Error_Handler();
}
}
void furi_hal_rfid_tim_read_start() {
HAL_TIMEx_PWMN_Start(&LFRFID_READ_TIM, LFRFID_READ_CHANNEL);
}
void furi_hal_rfid_tim_read_stop() {
HAL_TIMEx_PWMN_Stop(&LFRFID_READ_TIM, LFRFID_READ_CHANNEL);
}
void furi_hal_rfid_tim_emulate(float freq) {
// TODO LL init
uint32_t prescaler = (uint32_t)((SystemCoreClock) / freq) - 1;
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
// basic PWM setup with needed freq and internal clock
LFRFID_EMULATE_TIM.Init.Prescaler = prescaler;
LFRFID_EMULATE_TIM.Init.CounterMode = TIM_COUNTERMODE_UP;
LFRFID_EMULATE_TIM.Init.Period = 1;
LFRFID_EMULATE_TIM.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
LFRFID_EMULATE_TIM.Init.RepetitionCounter = 0;
LFRFID_EMULATE_TIM.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if(HAL_TIM_Base_Init(&LFRFID_EMULATE_TIM) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if(HAL_TIM_ConfigClockSource(&LFRFID_EMULATE_TIM, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
if(HAL_TIM_PWM_Init(&LFRFID_EMULATE_TIM) != HAL_OK) {
Error_Handler();
}
// no master-slave mode
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if(HAL_TIMEx_MasterConfigSynchronization(&LFRFID_EMULATE_TIM, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
// pwm config
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 1;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if(HAL_TIM_PWM_ConfigChannel(&LFRFID_EMULATE_TIM, &sConfigOC, LFRFID_EMULATE_CHANNEL) !=
HAL_OK) {
Error_Handler();
}
// no deadtime
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.BreakFilter = 0;
sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT;
sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
sBreakDeadTimeConfig.Break2Filter = 0;
sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if(HAL_TIMEx_ConfigBreakDeadTime(&LFRFID_EMULATE_TIM, &sBreakDeadTimeConfig) != HAL_OK) {
Error_Handler();
}
}
void furi_hal_rfid_tim_emulate_start() {
// TODO make api for interrupts priority
for(size_t i = WWDG_IRQn; i <= DMAMUX1_OVR_IRQn; i++) {
HAL_NVIC_SetPriority(i, 15, 0);
}
HAL_NVIC_SetPriority(TIM2_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
HAL_TIM_PWM_Start_IT(&LFRFID_EMULATE_TIM, LFRFID_EMULATE_CHANNEL);
HAL_TIM_Base_Start_IT(&LFRFID_EMULATE_TIM);
}
void furi_hal_rfid_tim_emulate_stop() {
HAL_TIM_Base_Stop(&LFRFID_EMULATE_TIM);
HAL_TIM_PWM_Stop(&LFRFID_EMULATE_TIM, LFRFID_EMULATE_CHANNEL);
}
void furi_hal_rfid_tim_reset() {
HAL_TIM_Base_DeInit(&LFRFID_READ_TIM);
LL_TIM_DeInit(TIM1);
LL_APB2_GRP1_DisableClock(LL_APB2_GRP1_PERIPH_TIM1);
HAL_TIM_Base_DeInit(&LFRFID_EMULATE_TIM);
LL_TIM_DeInit(TIM2);
LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2);
}
bool furi_hal_rfid_is_tim_emulate(TIM_HandleTypeDef* hw) {
return (hw == &LFRFID_EMULATE_TIM);
}
void furi_hal_rfid_set_emulate_period(uint32_t period) {
LFRFID_EMULATE_TIM.Instance->ARR = period;
}
void furi_hal_rfid_set_emulate_pulse(uint32_t pulse) {
switch(LFRFID_EMULATE_CHANNEL) {
case TIM_CHANNEL_1:
LFRFID_EMULATE_TIM.Instance->CCR1 = pulse;
break;
case TIM_CHANNEL_2:
LFRFID_EMULATE_TIM.Instance->CCR2 = pulse;
break;
case TIM_CHANNEL_3:
LFRFID_EMULATE_TIM.Instance->CCR3 = pulse;
break;
case TIM_CHANNEL_4:
LFRFID_EMULATE_TIM.Instance->CCR4 = pulse;
break;
default:
furi_crash(NULL);
break;
}
}
void furi_hal_rfid_set_read_period(uint32_t period) {
LFRFID_TIM.Instance->ARR = period;
}
void furi_hal_rfid_set_read_pulse(uint32_t pulse) {
switch(LFRFID_READ_CHANNEL) {
case TIM_CHANNEL_1:
LFRFID_TIM.Instance->CCR1 = pulse;
break;
case TIM_CHANNEL_2:
LFRFID_TIM.Instance->CCR2 = pulse;
break;
case TIM_CHANNEL_3:
LFRFID_TIM.Instance->CCR3 = pulse;
break;
case TIM_CHANNEL_4:
LFRFID_TIM.Instance->CCR4 = pulse;
break;
default:
furi_crash(NULL);
break;
}
}
void furi_hal_rfid_change_read_config(float freq, float duty_cycle) {
uint32_t period = (uint32_t)((SystemCoreClock) / freq) - 1;
furi_hal_rfid_set_read_period(period);
furi_hal_rfid_set_read_pulse(period * duty_cycle);
}