flipperzero-firmware/lib/subghz/protocols/subghz_protocol_nice_flor_s.c
Skorpionm a024e470b7
SubGhz: read and save static remotes. Create new static and dynamic remotes. (#646)
* SubGhz: the functions of saving loading KeeLog have been modified, saving KeeLog is prohibited
* SubGhz: Fix displaying Nice FlorS in the Raed scene
* SubGhz: Fix displaying Faac SLH in the Raed scene
* SubGhz: Fix displaying iDo in the Raed scene
* SubGhz: Fix displaying Star Line in the Raed scene
* SubGhz: Fix displaying Nice Flo in the Raed scene, added save and load functions. (testing needed, no remote control)
* SubGhz: subghz_beginadded common encoder upload signal
* SubGhz: add Came encoder
* SubGhz: modified pricenton encoder, fix view transmitter hide the "Send" button if there is no encoder
* SubGhz: add nice flo encoder, need testing no remote control
* SubGhz: add gate_tx encoder
* SubGhz: add nero_sketch encoder
* SubGhz: add keelog encoder
* SubGhz: add long upload upload while the button is pressed while releasing the transfer is over, with a check for sticking (maximum 200 upload repetitions)
* SubGhz: fix max upload
* SubGhz: Fix structure subghz add encoder
* SubGhz: add generating and sending a dynamic keelog key, refactoring the code
* SubGhz: add notifications
* SubGhz: add creating a new remote control (Pricenton, Nice Flo 12bit, Nice Flo 24bit, CAME 12bit, CAME 24bit, Gate TX, DoorHan)
* SubGhz: Fix load file, fix scene start
* Subghz: Fix show key
* SubGhz: Fix subghz_cli
* SubGhz: Fix furi-hal-subghz
* Format sources
* SubGhz: standard notification scheme, fix broken assert in DMA.
* SubGhz: move level alignment logic to furi-hal-subghz, fix spelling, cleanup.

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2021-08-16 22:56:23 +03:00

239 lines
9.2 KiB
C

#include "subghz_protocol_nice_flor_s.h"
#include <furi.h>
#include "file-worker.h"
/*
* https://phreakerclub.com/1615
* https://phreakerclub.com/forum/showthread.php?t=2360
* https://vrtp.ru/index.php?showtopic=27867
*/
struct SubGhzProtocolNiceFlorS {
SubGhzProtocolCommon common;
const char* rainbow_table_file_name;
};
SubGhzProtocolNiceFlorS* subghz_protocol_nice_flor_s_alloc() {
SubGhzProtocolNiceFlorS* instance = furi_alloc(sizeof(SubGhzProtocolNiceFlorS));
instance->common.name = "Nice FloR-S";
instance->common.code_min_count_bit_for_found = 52;
instance->common.te_short = 500;
instance->common.te_long = 1000;
instance->common.te_delta = 300;
instance->common.type_protocol = TYPE_PROTOCOL_DYNAMIC;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_protocol_nice_flor_s_to_str;
return instance;
}
void subghz_protocol_nice_flor_s_free(SubGhzProtocolNiceFlorS* instance) {
furi_assert(instance);
free(instance);
}
void subghz_protocol_nice_flor_s_name_file(SubGhzProtocolNiceFlorS* instance, const char* name) {
instance->rainbow_table_file_name = name;
printf("Loading Nice FloR S rainbow table %s\r\n", name);
}
/** Send bit
*
* @param instance - SubGhzProtocolNiceFlorS instance
* @param bit - bit
*/
void subghz_protocol_nice_flor_s_send_bit(SubGhzProtocolNiceFlorS* instance, uint8_t bit) {
if(bit) {
//send bit 1
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_long);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short);
} else {
//send bit 0
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_long);
}
}
void subghz_protocol_nice_flor_s_send_key(
SubGhzProtocolNiceFlorS* instance,
uint64_t key,
uint8_t bit,
uint8_t repeat) {
while(repeat--) {
//Send header
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 34);
//Send Start Bit
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short * 3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 3);
//Send key data
for(uint8_t i = bit; i > 0; i--) {
subghz_protocol_nice_flor_s_send_bit(instance, bit_read(key, i - 1));
}
//Send Stop Bit
SUBGHZ_TX_PIN_HIGH();
delay_us(instance->common.te_short * 3);
SUBGHZ_TX_PIN_LOW();
delay_us(instance->common.te_short * 3);
}
}
/** Read bytes from rainbow table
*
* @param instance - SubGhzProtocolNiceFlorS* instance
* @param address - address byte
* @return byte data
*/
uint8_t subghz_nice_flor_s_get_byte_in_file(SubGhzProtocolNiceFlorS* instance, uint32_t address) {
if(!instance->rainbow_table_file_name)
return 0;
uint8_t buffer = 0;
FileWorker* file_worker = file_worker_alloc(true);
if(file_worker_open(file_worker, instance->rainbow_table_file_name, FSAM_READ, FSOM_OPEN_EXISTING)) {
file_worker_seek(file_worker, address, true);
file_worker_read(file_worker, &buffer, 1);
// bool res = file_worker_read(file_worker, &buffer, 1);
// furi_assert(res== true);
}
file_worker_close(file_worker);
file_worker_free(file_worker);
return buffer;
}
/** Decrypt protocol Nice Flor S
*
* @param instance - SubGhzProtocolNiceFlorS* instance
*/
void subghz_nice_flor_s_decoder_decrypt(SubGhzProtocolNiceFlorS* instance) {
/*
* Packet format Nice Flor-s: START-P0-P1-P2-P3-P4-P5-P6-P7-STOP
* P0 (4-bit) - button positional code - 1:0x1, 2:0x2, 3:0x4, 4:0x8;
* P1 (4-bit) - batch repetition number, calculated by the formula:
* P1 = 0xF ^ P0 ^ n; where n changes from 1 to 15, then 0, and then in a circle
* key 1: {0xF,0xC,0xD,0xA,0xB,0x8,0x9,0x6,0x7,0x4,0x5,0x2,0x3,0x0,0x1,0xE};
* key 2: {0xC,0xF,0xE,0x9,0x8,0xB,0xA,0x5,0x4,0x7,0x6,0x1,0x0,0x3,0x2,0xD};
* key 3: {0xA,0x9,0x8,0xF,0xE,0xD,0xC,0x3,0x2,0x1,0x0,0x7,0x6,0x5,0x4,0xB};
* P2 (4-bit) - part of the serial number, P2 = (K ^ S3) & 0xF;
* P3 (byte) - the major part of the encrypted index
* P4 (byte) - the low-order part of the encrypted index
* P5 (byte) - part of the serial number, P5 = K ^ S2;
* P6 (byte) - part of the serial number, P6 = K ^ S1;
* P7 (byte) - part of the serial number, P7 = K ^ S0;
* K (byte) - depends on P3 and P4, K = Fk(P3, P4);
* S3,S2,S1,S0 - serial number of the console 28 bit.
*/
uint16_t p3p4 = (uint16_t)(instance->common.code_last_found >> 24);
instance->common.cnt = subghz_nice_flor_s_get_byte_in_file(instance,p3p4*2) << 8 | subghz_nice_flor_s_get_byte_in_file(instance,p3p4*2+1);
uint8_t k =(uint8_t)(p3p4 & 0x00FF) ^subghz_nice_flor_s_get_byte_in_file(instance,(0x20000 |(instance->common.cnt &0x00ff)));
uint8_t s3 = ((uint8_t)(instance->common.code_last_found >> 40) ^ k) & 0x0f;
uint8_t s2 = ((uint8_t)(instance->common.code_last_found >> 16) ^ k);
uint8_t s1 = ((uint8_t)(instance->common.code_last_found >> 8) ^ k);
uint8_t s0 = ((uint8_t)(instance->common.code_last_found) ^ k);
instance->common.serial = s3 << 24 | s2 << 16 | s1 << 8 | s0;
instance->common.btn = (instance->common.code_last_found >> 48) & 0x0f;
}
void subghz_protocol_nice_flor_s_reset(SubGhzProtocolNiceFlorS* instance) {
instance->common.parser_step = 0;
}
void subghz_protocol_nice_flor_s_parse(SubGhzProtocolNiceFlorS* instance, bool level, uint32_t duration) {
switch(instance->common.parser_step) {
case 0:
if((!level)
&& (DURATION_DIFF(duration, instance->common.te_short * 38) < instance->common.te_delta * 38)) {
//Found start header Nice Flor-S
instance->common.parser_step = 1;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
if((level)
&& (DURATION_DIFF(duration, instance->common.te_short * 3) < instance->common.te_delta * 3)) {
//Found next header Nice Flor-S
instance->common.parser_step = 2;
} else {
instance->common.parser_step = 0;
}
break;
case 2:
if((!level)
&& (DURATION_DIFF(duration, instance->common.te_short * 3) < instance->common.te_delta * 3)) {
//Found header Nice Flor-S
instance->common.parser_step = 3;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
}
break;
case 3:
if(level) {
if(DURATION_DIFF(duration, instance->common.te_short * 3) < instance->common.te_delta) {
//Found STOP bit
instance->common.parser_step = 0;
if(instance->common.code_count_bit >=instance->common.code_min_count_bit_for_found) {
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
if(instance->common.callback) instance->common.callback((SubGhzProtocolCommon*)instance, instance->common.context);
}
break;
} else {
//save interval
instance->common.te_last = duration;
instance->common.parser_step = 4;
}
}
break;
case 4:
if(!level) {
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) < instance->common.te_delta)
&&(DURATION_DIFF(duration, instance->common.te_long) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = 3;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) < instance->common.te_delta)
&&(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = 3;
} else
instance->common.parser_step = 0;
} else {
instance->common.parser_step = 0;
}
break;
}
}
void subghz_protocol_nice_flor_s_to_str(SubGhzProtocolNiceFlorS* instance, string_t output) {
subghz_nice_flor_s_decoder_decrypt(instance);
uint32_t code_found_hi = instance->common.code_last_found >> 32;
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
string_cat_printf(
output,
"%s, %d Bit\r\n"
" KEY:0x%lX%08lX\r\n"
" SN:%05lX\r\n"
" CNT:%04X BTN:%02lX\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_hi,
code_found_lo,
instance->common.serial,
instance->common.cnt,
instance->common.btn
);
}