flipperzero-firmware/lib/irda/encoder_decoder/common/irda_common_encoder.c
SG 274c12fc56
[FL-2274] Inventing streams and moving FFF to them (#981)
* Streams: string stream
* String stream: updated insert/delete api
* Streams: generic stream interface and string stream implementation
* Streams: helpers for insert and delete_and_insert
* FFF: now compatible with streams
* MinUnit: introduced tests with arguments
* FFF: stream access violation
* Streams: copy data between streams
* Streams: file stream
* FFF: documentation
* FFStream: documentation
* FFF: alloc as file
* MinUnit: support for nested tests
* Streams: changed delete_and_insert, now it returns success flag. Added ability dump stream inner parameters and data to cout.
* FFF: simplified file open function
* Streams: unit tests
* FFF: tests
* Streams: declare cache_size constant as define, to allow variable modified arrays
* FFF: lib moved to a separate folder
* iButton: new FFF
* RFID: new FFF
* Animations: new FFF
* IR: new FFF
* NFC: new FFF
* Flipper file format: delete lib
* U2F: new FFF
* Subghz: new FFF and streams
* Streams: read line
* Streams: split
* FuriCore: implement memset with extra asserts
* FuriCore: implement extra heap asserts without inventing memset
* Scene manager: protected access to the scene id stack with a size check
* NFC worker: dirty fix for issue where hal_nfc was busy on app start
* Furi: update allocator to erase memory on allocation. Replace furi_alloc with malloc.
* FuriCore: cleanup memmgr code.
* Furi HAL: furi_hal_init is split into critical and non-critical parts. The critical part is currently clock and console.
* Memmgr: added ability to track allocations and deallocations through console.
* FFStream: some speedup
* Streams, FF: minor fixes
* Tests: restore
* File stream: a slightly more thread-safe version of file_stream_delete_and_insert

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-02-18 22:53:46 +03:00

180 lines
5.8 KiB
C

#include "furi/check.h"
#include "irda.h"
#include "irda_common_i.h"
#include <stdbool.h>
#include <furi.h>
#include "irda_i.h"
#include <stdint.h>
static IrdaStatus
irda_common_encode_bits(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
IrdaStatus status = encoder->protocol->encode(encoder, duration, level);
furi_assert(status == IrdaStatusOk);
++encoder->timings_encoded;
encoder->timings_sum += *duration;
if((encoder->bits_encoded == encoder->bits_to_encode) && *level) {
status = IrdaStatusDone;
}
return status;
}
/*
*
* 3:
* even_timing = 0
* level = 0 ^ 1 = 1
* 4:
* even_timing = 1
* level = 1 ^ 1 = 0
* ++timing;
*
*
* 0 1 2 | 3 4 |
* _____-------_____---___
*/
IrdaStatus
irda_common_encode_manchester(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
const IrdaTimings* timings = &encoder->protocol->timings;
uint8_t index = encoder->bits_encoded / 8;
uint8_t shift = encoder->bits_encoded % 8; // LSB first
bool logic_value = !!(encoder->data[index] & (0x01 << shift));
bool even_timing = !(encoder->timings_encoded % 2);
*level = even_timing ^ logic_value;
*duration = timings->bit1_mark;
if(even_timing)
++encoder->bits_encoded;
else if(*level && (encoder->bits_encoded + 1 == encoder->bits_to_encode))
++encoder->bits_encoded; /* don't encode last space */
return IrdaStatusOk;
}
IrdaStatus irda_common_encode_pdwm(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
const IrdaTimings* timings = &encoder->protocol->timings;
uint8_t index = encoder->bits_encoded / 8;
uint8_t shift = encoder->bits_encoded % 8; // LSB first
bool logic_value = !!(encoder->data[index] & (0x01 << shift));
bool pwm = timings->bit1_space == timings->bit0_space;
if(encoder->timings_encoded % 2) { /* start encoding from space */
*duration = logic_value ? timings->bit1_mark : timings->bit0_mark;
*level = true;
if(pwm) ++encoder->bits_encoded;
} else {
*duration = logic_value ? timings->bit1_space : timings->bit0_space;
*level = false;
if(!pwm) ++encoder->bits_encoded;
}
return IrdaStatusOk;
}
IrdaStatus irda_common_encode(IrdaCommonEncoder* encoder, uint32_t* duration, bool* level) {
furi_assert(encoder);
furi_assert(duration);
furi_assert(level);
IrdaStatus status = IrdaStatusOk;
const IrdaTimings* timings = &encoder->protocol->timings;
switch(encoder->state) {
case IrdaCommonEncoderStateSilence:
*duration = encoder->protocol->timings.silence_time;
*level = false;
status = IrdaStatusOk;
encoder->state = IrdaCommonEncoderStatePreamble;
++encoder->timings_encoded;
encoder->timings_sum = 0;
break;
case IrdaCommonEncoderStatePreamble:
if(timings->preamble_mark) {
if(encoder->timings_encoded == 1) {
*duration = timings->preamble_mark;
*level = true;
} else {
*duration = timings->preamble_space;
*level = false;
encoder->state = IrdaCommonEncoderStateEncode;
}
++encoder->timings_encoded;
encoder->timings_sum += *duration;
break;
} else {
encoder->state = IrdaCommonEncoderStateEncode;
}
/* FALLTHROUGH */
case IrdaCommonEncoderStateEncode:
status = irda_common_encode_bits(encoder, duration, level);
if(status == IrdaStatusDone) {
if(encoder->protocol->encode_repeat) {
encoder->state = IrdaCommonEncoderStateEncodeRepeat;
} else {
encoder->timings_encoded = 0;
encoder->timings_sum = 0;
encoder->bits_encoded = 0;
encoder->switch_detect = 0;
encoder->state = IrdaCommonEncoderStateSilence;
}
}
break;
case IrdaCommonEncoderStateEncodeRepeat:
status = encoder->protocol->encode_repeat(encoder, duration, level);
break;
}
return status;
}
void* irda_common_encoder_alloc(const IrdaCommonProtocolSpec* protocol) {
furi_assert(protocol);
if(protocol->decode == irda_common_decode_pdwm) {
furi_assert(
(protocol->timings.bit1_mark == protocol->timings.bit0_mark) ^
(protocol->timings.bit1_space == protocol->timings.bit0_space));
}
/* protocol->databit_len[0] has to contain biggest value of bits that can be decoded */
for(int i = 1; i < COUNT_OF(protocol->databit_len); ++i) {
furi_assert(protocol->databit_len[i] <= protocol->databit_len[0]);
}
uint32_t alloc_size = sizeof(IrdaCommonDecoder) + protocol->databit_len[0] / 8 +
!!(protocol->databit_len[0] % 8);
IrdaCommonEncoder* encoder = malloc(alloc_size);
memset(encoder, 0, alloc_size);
encoder->protocol = protocol;
return encoder;
}
void irda_common_encoder_free(IrdaCommonEncoder* encoder) {
furi_assert(encoder);
free(encoder);
}
void irda_common_encoder_reset(IrdaCommonEncoder* encoder) {
furi_assert(encoder);
encoder->timings_encoded = 0;
encoder->timings_sum = 0;
encoder->bits_encoded = 0;
encoder->state = IrdaCommonEncoderStateSilence;
encoder->switch_detect = 0;
uint8_t max_databit_len = 0;
for(int i = 0; i < COUNT_OF(encoder->protocol->databit_len); ++i) {
max_databit_len = MAX(max_databit_len, encoder->protocol->databit_len[i]);
}
uint8_t bytes_to_clear = max_databit_len / 8 + !!(max_databit_len % 8);
memset(encoder->data, 0, bytes_to_clear);
}