flipperzero-firmware/lib/subghz/protocols/linear.c
Max Lapan 3360f818a1
Subghz: Adding checks for get_upload functions (#1704)
* Adding checks for get_upload functions
  Almost in every protocol, function which generates upload might fail and return false.
  But we don't check this result, which might end up sending random memory contents to the air.
* Format sources and fix crash on ivalid bit count in chamberlain

Co-authored-by: あく <alleteam@gmail.com>
2022-09-20 14:29:10 +09:00

353 lines
13 KiB
C

#include "linear.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolLinear"
#define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
#define DATA_TO_DIP(dip) \
(dip & 0x0200 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \
(dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), \
(dip & 0x0008 ? '1' : '0'), (dip & 0x0004 ? '1' : '0'), (dip & 0x0002 ? '1' : '0'), \
(dip & 0x0001 ? '1' : '0')
static const SubGhzBlockConst subghz_protocol_linear_const = {
.te_short = 500,
.te_long = 1500,
.te_delta = 150,
.min_count_bit_for_found = 10,
};
struct SubGhzProtocolDecoderLinear {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderLinear {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
LinearDecoderStepReset = 0,
LinearDecoderStepSaveDuration,
LinearDecoderStepCheckDuration,
} LinearDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_linear_decoder = {
.alloc = subghz_protocol_decoder_linear_alloc,
.free = subghz_protocol_decoder_linear_free,
.feed = subghz_protocol_decoder_linear_feed,
.reset = subghz_protocol_decoder_linear_reset,
.get_hash_data = subghz_protocol_decoder_linear_get_hash_data,
.serialize = subghz_protocol_decoder_linear_serialize,
.deserialize = subghz_protocol_decoder_linear_deserialize,
.get_string = subghz_protocol_decoder_linear_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_linear_encoder = {
.alloc = subghz_protocol_encoder_linear_alloc,
.free = subghz_protocol_encoder_linear_free,
.deserialize = subghz_protocol_encoder_linear_deserialize,
.stop = subghz_protocol_encoder_linear_stop,
.yield = subghz_protocol_encoder_linear_yield,
};
const SubGhzProtocol subghz_protocol_linear = {
.name = SUBGHZ_PROTOCOL_LINEAR_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_315 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_linear_decoder,
.encoder = &subghz_protocol_linear_encoder,
};
void* subghz_protocol_encoder_linear_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderLinear* instance = malloc(sizeof(SubGhzProtocolEncoderLinear));
instance->base.protocol = &subghz_protocol_linear;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 28; //max 10bit*2 + 2 (start, stop)
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_linear_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderLinear* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderLinear instance
* @return true On success
*/
static bool subghz_protocol_encoder_linear_get_upload(SubGhzProtocolEncoderLinear* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 1; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 3);
}
}
//Send end bit
if(bit_read(instance->generic.data, 0)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short * 3);
//Send PT_GUARD
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 42);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_linear_const.te_short);
//Send PT_GUARD
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_linear_const.te_short * 44);
}
return true;
}
bool subghz_protocol_encoder_linear_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderLinear* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_linear_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_linear_get_upload(instance)) break;
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_linear_stop(void* context) {
SubGhzProtocolEncoderLinear* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_linear_yield(void* context) {
SubGhzProtocolEncoderLinear* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_linear_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderLinear* instance = malloc(sizeof(SubGhzProtocolDecoderLinear));
instance->base.protocol = &subghz_protocol_linear;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_linear_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
free(instance);
}
void subghz_protocol_decoder_linear_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
instance->decoder.parser_step = LinearDecoderStepReset;
}
void subghz_protocol_decoder_linear_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
switch(instance->decoder.parser_step) {
case LinearDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) <
subghz_protocol_linear_const.te_delta * 20)) {
//Found header Linear
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.parser_step = LinearDecoderStepSaveDuration;
}
break;
case LinearDecoderStepSaveDuration:
if(level) {
instance->decoder.te_last = duration;
instance->decoder.parser_step = LinearDecoderStepCheckDuration;
} else {
instance->decoder.parser_step = LinearDecoderStepReset;
}
break;
case LinearDecoderStepCheckDuration:
if(!level) { //save interval
if(duration >= (subghz_protocol_linear_const.te_short * 5)) {
instance->decoder.parser_step = LinearDecoderStepReset;
//checking that the duration matches the guardtime
if((DURATION_DIFF(duration, subghz_protocol_linear_const.te_short * 42) >
subghz_protocol_linear_const.te_delta * 20)) {
break;
}
if(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) <
subghz_protocol_linear_const.te_delta) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else if(
DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) <
subghz_protocol_linear_const.te_delta) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
}
if(instance->decoder.decode_count_bit ==
subghz_protocol_linear_const.min_count_bit_for_found) {
instance->generic.serial = 0x0;
instance->generic.btn = 0x0;
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
break;
}
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_short) <
subghz_protocol_linear_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_linear_const.te_long) <
subghz_protocol_linear_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = LinearDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_linear_const.te_long) <
subghz_protocol_linear_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_linear_const.te_short) <
subghz_protocol_linear_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = LinearDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = LinearDecoderStepReset;
}
} else {
instance->decoder.parser_step = LinearDecoderStepReset;
}
break;
}
}
uint8_t subghz_protocol_decoder_linear_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_linear_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_linear_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_linear_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_linear_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderLinear* instance = context;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"DIP:" DIP_PATTERN "\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_lo,
code_found_reverse_lo,
DATA_TO_DIP(code_found_lo));
}