Take into account deltaE to reduce artifacts with Transmission Map

This commit is contained in:
Desmis 2019-10-01 14:51:40 +02:00
parent 2ed52360f5
commit 015cef4e74
6 changed files with 287 additions and 328 deletions

View File

@ -902,7 +902,7 @@ HISTORY_MSG_653;Local - SH mask chroma
HISTORY_MSG_654;Local - SH mask gamma HISTORY_MSG_654;Local - SH mask gamma
HISTORY_MSG_655;Local - SH mask slope HISTORY_MSG_655;Local - SH mask slope
HISTORY_MSG_656;Local - Color soft radius HISTORY_MSG_656;Local - Color soft radius
HISTORY_MSG_657;Local - Retinex Guided Filter radius HISTORY_MSG_657;Local - Retinex Reduce artifacts
HISTORY_MSG_658;Local - CBDL soft radius HISTORY_MSG_658;Local - CBDL soft radius
HISTORY_MSG_659;Local Spot transition-weakening HISTORY_MSG_659;Local Spot transition-weakening
HISTORY_MSG_660;Local - cbdl clarity HISTORY_MSG_660;Local - cbdl clarity
@ -2212,6 +2212,8 @@ TP_LOCALLAB_RETI_NEIGH_VART_TOOLTIP;Adapt these values according to images - if
TP_LOCALLAB_LC_FFTW_TOOLTIP;FFT improve quality and allow big radius, but increases the treatment time.\nThe treatment time depends on the surface to be treated.\nTo be used preferably for large radius.\n\nDimensions can be reduced by a few pixels to optimize FFTW.\nThis optimization can reduce the treatment time by a factor of 1.5 to 10.\n TP_LOCALLAB_LC_FFTW_TOOLTIP;FFT improve quality and allow big radius, but increases the treatment time.\nThe treatment time depends on the surface to be treated.\nTo be used preferably for large radius.\n\nDimensions can be reduced by a few pixels to optimize FFTW.\nThis optimization can reduce the treatment time by a factor of 1.5 to 10.\n
TP_LOCALLAB_RETI_FFTW_TOOLTIP;FFT improve quality and allow big radius, but increases the treatment time.\nThe treatment time depends on the surface to be treated\nThe treatment time depends on the value of scale (be carefull to high values).\nTo be used preferably for large radius.\n\nDimensions can be reduced by a few pixels to optimize FFTW.\nThis optimization can reduce the treatment time by a factor of 1.5 to 10.\nOptimization not used in Preview TP_LOCALLAB_RETI_FFTW_TOOLTIP;FFT improve quality and allow big radius, but increases the treatment time.\nThe treatment time depends on the surface to be treated\nThe treatment time depends on the value of scale (be carefull to high values).\nTo be used preferably for large radius.\n\nDimensions can be reduced by a few pixels to optimize FFTW.\nThis optimization can reduce the treatment time by a factor of 1.5 to 10.\nOptimization not used in Preview
TP_LOCALLAB_ENARETIMASKTMAP_TOOLTIP;If enabled Mask uses Restored Datas after Transmission Map instead of Original datas TP_LOCALLAB_ENARETIMASKTMAP_TOOLTIP;If enabled Mask uses Restored Datas after Transmission Map instead of Original datas
TP_LOCALLAB_SOFTRETI;Reduce artifact deltaE
TP_LOCALLAB_SOFTRETI_TOOLTIP;Take into account deltaE to improve Transmission map
TP_LOCALLAB_TRANSMISSIONGAIN;Transmission gain TP_LOCALLAB_TRANSMISSIONGAIN;Transmission gain
TP_LOCALLAB_TRANSMISSIONMAP;Transmission map TP_LOCALLAB_TRANSMISSIONMAP;Transmission map
TP_LOCALLAB_TRANSMISSION_TOOLTIP;Transmission according to transmission.\nAbscissa: transmission from negative values (min), mean, and positives values (max).\nOrdinate: amplification or reduction.\nYou can act on this curve to change Transmission and reduce the artifacts TP_LOCALLAB_TRANSMISSION_TOOLTIP;Transmission according to transmission.\nAbscissa: transmission from negative values (min), mean, and positives values (max).\nOrdinate: amplification or reduction.\nYou can act on this curve to change Transmission and reduce the artifacts

View File

@ -194,7 +194,7 @@ public:
void fftw_convol_blur2(float **input2, float **output2, int bfw, int bfh, float radius, int fftkern, int algo); void fftw_convol_blur2(float **input2, float **output2, int bfw, int bfh, float radius, int fftkern, int algo);
void fftw_tile_blur(int GW, int GH, int tilssize , int max_numblox_W, int min_numblox_W, float **tmp1, int numThreads, double radius); void fftw_tile_blur(int GW, int GH, int tilssize , int max_numblox_W, int min_numblox_W, float **tmp1, int numThreads, double radius);
void MSRLocal(int sp, bool fftw, int lum, LabImage * bufreti, LabImage * bufmask, LabImage * buforig, LabImage * buforigmas, float** luminance, float** templ, const float* const *originalLuminance, const int width, const int height, int bfwr, int bfhr, const procparams::LocallabParams &loc, const int skip, const LocretigainCurve &locRETgainCcurve, const LocretitransCurve &locRETtransCcurve, const int chrome, const int scall, const float krad, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax, void MSRLocal(int sp, bool fftw, int lum, float** reducDE, LabImage * bufreti, LabImage * bufmask, LabImage * buforig, LabImage * buforigmas, float** luminance, float** templ, const float* const *originalLuminance, const int width, const int height, int bfwr, int bfhr, const procparams::LocallabParams &loc, const int skip, const LocretigainCurve &locRETgainCcurve, const LocretitransCurve &locRETtransCcurve, const int chrome, const int scall, const float krad, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax,
const LocCCmaskCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili, int llretiMask, LabImage * transformed, bool retiMasktmap, bool retiMask); const LocCCmaskCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili, int llretiMask, LabImage * transformed, bool retiMasktmap, bool retiMask);
void calc_ref(int sp, LabImage* original, LabImage* transformed, int cx, int cy, int oW, int oH, int sk, double &huerefblur, double &chromarefblur, double &lumarefblur, double &hueref, double &chromaref, double &lumaref, double &sobelref, float &avg); void calc_ref(int sp, LabImage* original, LabImage* transformed, int cx, int cy, int oW, int oH, int sk, double &huerefblur, double &chromarefblur, double &lumarefblur, double &hueref, double &chromaref, double &lumaref, double &sobelref, float &avg);
void copy_ref(LabImage* spotbuffer, LabImage* original, LabImage* transformed, int cx, int cy, int sk, const struct local_params & lp, double &huerefspot, double &chromarefspot, double &lumarefspot); void copy_ref(LabImage* spotbuffer, LabImage* original, LabImage* transformed, int cx, int cy, int sk, const struct local_params & lp, double &huerefspot, double &chromarefspot, double &lumarefspot);

View File

@ -67,6 +67,7 @@
#define CLIP42_35(x) LIM(x, 0.42, 3.5) #define CLIP42_35(x) LIM(x, 0.42, 3.5)
#define CLIP2_30(x) LIM(x, 0.2, 3.) #define CLIP2_30(x) LIM(x, 0.2, 3.)
#define CLIPMAX(x) LIM(x,0.f,500000.f) #define CLIPMAX(x) LIM(x,0.f,500000.f)
#define CLIPdE(x) LIM(x,0.3f,1.f)
#pragma GCC diagnostic warning "-Wall" #pragma GCC diagnostic warning "-Wall"
#pragma GCC diagnostic warning "-Wextra" #pragma GCC diagnostic warning "-Wextra"
@ -8806,6 +8807,46 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
} }
} }
float raddE = params->locallab.spots.at(sp).softradiusret;
//calc dE and reduction to use in MSR to reduce artifacts
const int limscope = 80;
const float mindE = 4.f + MINSCOPE * lp.sensh * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensh * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
float *reducDE[Hd] ALIGNED16;
float *reducDEBuffer = new float[Hd * Wd];
for (int i = 0; i < Hd; i++) {
reducDE[i] = &reducDEBuffer[i * Wd];
}
// float minreduc = 1000000.f;
// float maxreduc = -1000000.f;
float ade = 0.01f * raddE;
float bde = 100.f - raddE;
float sensibefore = ade * lp.sensh + bde;//we can change sensitivity 0.1 90 or 0.3 70 or 0.4 60
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++)
for (int x = 0; x < transformed->W; x++) {
float dE = sqrt(SQR(refa - bufreti->a[y][x] / 327.68f) + SQR(refb - bufreti->b[y][x] / 327.68f) + SQR(lumaref - bufreti->b[y][x] / 327.68f));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sensibefore, reducdE);
reducDE[y][x] = CLIPdE(reducdE);
// if(reducDE[y][x] > maxreduc) maxreduc = reducDE[y][x];
// if(reducDE[y][x] < minreduc) minreduc = reducDE[y][x];
}
// printf("reducdemax=%f reducmin=%f\n", maxreduc, minreduc);
float *orig[Hd] ALIGNED16; float *orig[Hd] ALIGNED16;
float *origBuffer = new float[Hd * Wd]; float *origBuffer = new float[Hd * Wd];
@ -8893,7 +8934,7 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
bool fftw = lp.ftwreti; bool fftw = lp.ftwreti;
//fftw = false; //fftw = false;
//for Retinex Mask are incorporated in MSR //for Retinex Mask are incorporated in MSR
ImProcFunctions::MSRLocal(sp, fftw, 1, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, ImProcFunctions::MSRLocal(sp, fftw, 1, reducDE, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask); locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask);
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for #pragma omp parallel for
@ -9021,7 +9062,7 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
bool fftw = false; bool fftw = false;
if (params->locallab.spots.at(sp).chrrt > 40.f) { //second step active Retinex Chroma if (params->locallab.spots.at(sp).chrrt > 40.f) { //second step active Retinex Chroma
ImProcFunctions::MSRLocal(sp, fftw, 0, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 1, 4, 0.8f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, ImProcFunctions::MSRLocal(sp, fftw, 0, nullptr, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 1, 4, 0.8f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask); locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask);
} }
@ -9098,6 +9139,7 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
} }
delete tmpl; delete tmpl;
delete [] reducDEBuffer;
delete [] origBuffer; delete [] origBuffer;
delete [] origBuffer1; delete [] origBuffer1;
@ -9273,6 +9315,41 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
} }
} }
float raddE = params->locallab.spots.at(sp).softradiusret;
//calc dE and reduction to use in MSR to reduce artifacts
const int limscope = 80;
const float mindE = 4.f + MINSCOPE * lp.sensh * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensh * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
float *reducDE[Hd] ALIGNED16;
float *reducDEBuffer = new float[Hd * Wd];
for (int i = 0; i < Hd; i++) {
reducDE[i] = &reducDEBuffer[i * Wd];
}
float ade = 0.01f * raddE;
float bde = 100.f - raddE;
float sensibefore = ade * lp.sensh + bde;//we can change sensitivity 0.1 90 or 0.3 70 or 0.4 60
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++)
for (int x = xstart; x < xend; x++) {
float dE = sqrt(SQR(refa - bufreti->a[y - ystart][x - xstart] / 327.68f) + SQR(refb - bufreti->b[y - ystart][x - xstart] / 327.68f) + SQR(lumaref - bufreti->b[y - ystart][x - xstart] / 327.68f));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, sensibefore, reducdE);
reducDE[y - ystart][x - xstart] = CLIPdE(reducdE);
}
float *orig[Hd] ALIGNED16; float *orig[Hd] ALIGNED16;
float *origBuffer = new float[Hd * Wd]; float *origBuffer = new float[Hd * Wd];
@ -9358,7 +9435,7 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
bool fftw = lp.ftwreti; bool fftw = lp.ftwreti;
//for Retinex Mask are incorporated in MSR //for Retinex Mask are incorporated in MSR
ImProcFunctions::MSRLocal(sp, fftw, 1, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, bfwr, bfhr, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, ImProcFunctions::MSRLocal(sp, fftw, 1, reducDE, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, bfwr, bfhr, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask); locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask);
#ifdef _OPENMP #ifdef _OPENMP
@ -9496,7 +9573,7 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
bool fftw = false; bool fftw = false;
if (params->locallab.spots.at(sp).chrrt > 40.f) { //second step active Retinex Chroma if (params->locallab.spots.at(sp).chrrt > 40.f) { //second step active Retinex Chroma
ImProcFunctions::MSRLocal(sp, fftw, 0, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 1, 4, 0.8f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax, ImProcFunctions::MSRLocal(sp, fftw, 0, nullptr, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, Wd, Hd, params->locallab, sk, locRETgainCcurve, locRETtransCcurve, 1, 4, 0.8f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask); locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask);
} }
@ -9573,6 +9650,7 @@ void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * o
} }
delete tmpl; delete tmpl;
delete [] reducDEBuffer;
delete [] origBuffer; delete [] origBuffer;
delete [] origBuffer1; delete [] origBuffer1;

View File

@ -861,7 +861,6 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
bufmaskblurreti.reset(new LabImage(W_L, H_L)); bufmaskblurreti.reset(new LabImage(W_L, H_L));
std::unique_ptr<LabImage> bufmaskorigreti; std::unique_ptr<LabImage> bufmaskorigreti;
bufmaskorigreti.reset(new LabImage(W_L, H_L)); bufmaskorigreti.reset(new LabImage(W_L, H_L));
printf("mask 1\n");
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16) #pragma omp parallel for schedule(dynamic,16)
#endif #endif
@ -878,7 +877,6 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
} }
} }
printf("mask 2\n");
float fab = 4000.f;//value must be good in most cases float fab = 4000.f;//value must be good in most cases
@ -934,7 +932,6 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
} }
} }
printf("mask 3\n");
if (loc.spots.at(sp).radmaskreti > 0.f) { if (loc.spots.at(sp).radmaskreti > 0.f) {
guidedFilter(guid, ble, ble, loc.spots.at(sp).radmaskreti * 10.f / skip, 0.001, multiThread, 4); guidedFilter(guid, ble, ble, loc.spots.at(sp).radmaskreti * 10.f / skip, 0.001, multiThread, 4);
@ -956,7 +953,6 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
bufmaskblurreti->L[ir][jr] = lutTonemaskreti[L_]; bufmaskblurreti->L[ir][jr] = lutTonemaskreti[L_];
} }
printf("mask 4\n");
//blend //blend
#ifdef _OPENMP #ifdef _OPENMP
@ -993,7 +989,6 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
} }
} }
printf("mask 5\n");
} }
@ -1029,11 +1024,9 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
gaussianBlur(buforig->a, buforigmas->a, W_L, H_L, radius); gaussianBlur(buforig->a, buforigmas->a, W_L, H_L, radius);
gaussianBlur(buforig->b, buforigmas->b, W_L, H_L, radius); gaussianBlur(buforig->b, buforigmas->b, W_L, H_L, radius);
} }
printf("mask 6\n");
} }
printf("mask 7\n");
if (llretiMask == 3) { if (llretiMask == 3) {
@ -1054,7 +1047,7 @@ void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_
} }
void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, LabImage * bufreti, LabImage * bufmask, LabImage * buforig, LabImage * buforigmas, float** luminance, float** templ, const float* const *originalLuminance, const int width, const int height, int bfwr, int bfhr, const LocallabParams &loc, const int skip, const LocretigainCurve &locRETgainCcurve, const LocretitransCurve &locRETtransCcurve, const int chrome, const int scall, const float krad, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax, void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, float** reducDE, LabImage * bufreti, LabImage * bufmask, LabImage * buforig, LabImage * buforigmas, float** luminance, float** templ, const float* const *originalLuminance, const int width, const int height, int bfwr, int bfhr, const LocallabParams &loc, const int skip, const LocretigainCurve &locRETgainCcurve, const LocretitransCurve &locRETtransCcurve, const int chrome, const int scall, const float krad, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax,
const LocCCmaskCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili, int llretiMask, LabImage * transformed, bool retiMasktmap, bool retiMask) const LocCCmaskCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili, int llretiMask, LabImage * transformed, bool retiMasktmap, bool retiMask)
{ {
BENCHFUN BENCHFUN
@ -1080,7 +1073,6 @@ void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, LabImage * bufreti, L
float ilimD = 1.f / limD; float ilimD = 1.f / limD;
float threslum = loc.spots.at(sp).limd; float threslum = loc.spots.at(sp).limd;
const float elogt = 2.71828f; const float elogt = 2.71828f;
float radi = loc.spots.at(sp).softradiusret;
if (!logli) { if (!logli) {
useHslLin = true; useHslLin = true;
@ -1306,379 +1298,266 @@ void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, LabImage * bufreti, L
} }
if (scal >= 1 && radi > 100000.f) {//always desactivated
float mintran = luminance[0][0];
float maxtran = mintran;
if (scal == 1) {
float kval = 1.f;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for reduction(min:mintran) reduction(max:maxtran) schedule(dynamic,16) #pragma omp parallel for
#endif #endif
for (int ir = 0; ir < H_L; ir++) { for (int y = 0; y < H_L; ++y) {
for (int jr = 0; jr < W_L; jr++) { for (int x = 0; x < W_L; ++x) {
mintran = rtengine::min(luminance[ir][jr], mintran); float threslow = threslum * 163.f;
maxtran = rtengine::max(luminance[ir][jr], maxtran);
if (src[y][x] < threslow) {
kval = src[y][x] / threslow;
} }
} }
float deltatran = maxtran - mintran;
// printf("minT=%f maxT=%f delt=%f \n", mintran, maxtran, deltatran);
//here add GuidFilter for transmission map
array2D<float> ble(W_L, H_L);
array2D<float> guid(W_L, H_L);
// float clipt = loc.spots.at(sp).cliptm;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
guid[i][j] = src[i][j] / 32768.f;
ble[i][j] = LIM((luminance[i][j] - mintran) / deltatran, 0.f, 1.f);
}
double epsilmax = 0.9;
double epsilmin = 1e-5;
if (radi > 0.f) {
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * radi + bepsil;
float blur = 10.f / skip * (0.00001f + 0.8f * radi);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, multiThread, 4);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
luminance[i][j] = ble[i][j] * deltatran + mintran;
}
ble(0, 0);
guid(0, 0);
} }
if (scal == 1) {
float kval = 1.f;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for #pragma omp parallel for
#endif #endif
for (int y = 0; y < H_L; ++y) { for (int y = 0; y < H_L; ++y) {
for (int x = 0; x < W_L; ++x) { for (int x = 0; x < W_L; ++x) {
float threslow = threslum * 163.f; float buf = (src[y][x] - out[y][x]) * value_1;
buf *= (buf > 0.f) ? lig : dar;
if (src[y][x] < threslow) { luminance[y][x] = LIM(src[y][x] + (1.f + kval) * buf, -32768.f, 32768.f);
kval = src[y][x] / threslow;
}
}
} }
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < H_L; ++y) {
for (int x = 0; x < W_L; ++x) {
float buf = (src[y][x] - out[y][x]) * value_1;
buf *= (buf > 0.f) ? lig : dar;
luminance[y][x] = LIM(src[y][x] + (1.f + kval) * buf, -32768.f, 32768.f);
}
}
double avg = 0.f;
int ng = 0;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
avg += luminance[i][j];
ng++;
}
}
avg /= ng;
avg /= 32768.f;
avg = LIM01(avg);
float contreal = 0.5f * vart;
DiagonalCurve reti_contrast({
DCT_NURBS,
0, 0,
avg - avg * (0.6 - contreal / 250.0), avg - avg * (0.6 + contreal / 250.0),
avg + (1 - avg) * (0.6 - contreal / 250.0), avg + (1 - avg) * (0.6 + contreal / 250.0),
1, 1
});
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) {
float buf = LIM01(luminance[i][j] / 32768.f);
buf = reti_contrast.getVal(buf);
buf *= 32768.f;
luminance[i][j] = buf;
}
} }
if (scal == 1 && radi > 1000000.f) {//always desactivated double avg = 0.f;
float mintran = luminance[0][0]; int ng = 0;
float maxtran = mintran;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for reduction(min:mintran) reduction(max:maxtran) schedule(dynamic,16) #pragma omp parallel for
#endif #endif
for (int ir = 0; ir < H_L; ir++) { for (int i = 0; i < H_L; i++) {
for (int jr = 0; jr < W_L; jr++) { for (int j = 0; j < W_L; j++) {
mintran = rtengine::min(luminance[ir][jr], mintran); avg += luminance[i][j];
maxtran = rtengine::max(luminance[ir][jr], maxtran); ng++;
}
} }
float deltatran = maxtran - mintran;
array2D<float> ble(W_L, H_L);
array2D<float> guid(W_L, H_L);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
guid[i][j] = src[i][j] / 32768.f;
ble[i][j] = (luminance[i][j] - mintran) / deltatran;
}
double epsilmax = 0.9;
double epsilmin = 1e-4;
if (radi > 0.f) {
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * radi + bepsil;
float blur = 10.f / skip * (0.001f + 0.2f * radi);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, multiThread, 4);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
luminance[i][j] = ble[i][j] * deltatran + mintran;
}
ble(0, 0);
guid(0, 0);
} }
delete [] buffer; avg /= ng;
delete [] outBuffer; avg /= 32768.f;
outBuffer = nullptr; avg = LIM01(avg);
delete [] srcBuffer; float contreal = 0.5f * vart;
srcBuffer = nullptr; DiagonalCurve reti_contrast({
DCT_NURBS,
float str = strength * (chrome == 0 ? 1.f : 0.8f * (chrT - 0.4f)); 0, 0,
const float maxclip = (chrome == 0 ? 32768.f : 50000.f); avg - avg * (0.6 - contreal / 250.0), avg - avg * (0.6 + contreal / 250.0),
avg + (1 - avg) * (0.6 - contreal / 250.0), avg + (1 - avg) * (0.6 + contreal / 250.0),
if (scal != 1) { 1, 1
mean = 0.f; });
stddv = 0.f;
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
// printf("mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", mean, stddv, delta, maxtr, mintr);
if (locRETtransCcurve && mean != 0.f && stddv != 0.f) { //if curve
float asig = 0.166666f / stddv;
float bsig = 0.5f - asig * mean;
float amax = 0.333333f / (maxtr - mean - stddv);
float bmax = 1.f - amax * maxtr;
float amin = 0.333333f / (mean - stddv - mintr);
float bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel #pragma omp parallel for
#endif
{
float absciss;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif #endif
for (int i = 0; i < H_L; i++) for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) { //for mintr to maxtr evalate absciss in function of original transmission for (int j = 0; j < W_L; j++) {
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) { float buf = LIM01(luminance[i][j] / 32768.f);
absciss = asig * luminance[i][j] + bsig; buf = reti_contrast.getVal(buf);
} else if (luminance[i][j] >= mean) { buf *= 32768.f;
absciss = amax * luminance[i][j] + bmax; luminance[i][j] = buf;
} else { /*if(luminance[i][j] <= mean - stddv)*/
absciss = amin * luminance[i][j] + bmin;
}
//TODO : move multiplication by 4.f and subtraction of 1.f inside the curve
luminance[i][j] *= (-1.f + 4.f * locRETtransCcurve[absciss]); //new transmission
}
}
} }
}
float epsil = 0.1f;
mini = mean - vart * stddv; delete [] buffer;
delete [] outBuffer;
outBuffer = nullptr;
delete [] srcBuffer;
srcBuffer = nullptr;
if (mini < mintr) { float str = strength * (chrome == 0 ? 1.f : 0.8f * (chrT - 0.4f));
mini = mintr + epsil; const float maxclip = (chrome == 0 ? 32768.f : 50000.f);
}
maxi = mean + vart * stddv; if (scal != 1) {
mean = 0.f;
stddv = 0.f;
if (maxi > maxtr) { mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
maxi = maxtr - epsil; // printf("mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", mean, stddv, delta, maxtr, mintr);
}
delta = maxi - mini; if (locRETtransCcurve && mean != 0.f && stddv != 0.f) { //if curve
// printf("maxi=%f mini=%f mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", maxi, mini, mean, stddv, delta, maxtr, mintr); float asig = 0.166666f / stddv;
float bsig = 0.5f - asig * mean;
if (!delta) { float amax = 0.333333f / (maxtr - mean - stddv);
delta = 1.0f; float bmax = 1.f - amax * maxtr;
} float amin = 0.333333f / (mean - stddv - mintr);
float bmin = -amin * mintr;
float cdfactor = (clipt * 32768.f) / delta;
maxCD = -9999999.f;
minCD = 9999999.f;
//prepare work for curve gain
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
luminance[i][j] = luminance[i][j] - mini;
}
}
mean = 0.f;
stddv = 0.f;
// I call mean_stddv2 instead of mean_stddv ==> logBetaGain
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
float asig = 0.f, bsig = 0.f, amax = 0.f, bmax = 0.f, amin = 0.f, bmin = 0.f;
const bool hasRetGainCurve = locRETgainCcurve && mean != 0.f && stddv != 0.f;
if (hasRetGainCurve) { //if curve
asig = 0.166666f / stddv;
bsig = 0.5f - asig * mean;
amax = 0.333333f / (maxtr - mean - stddv);
bmax = 1.f - amax * maxtr;
amin = 0.333333f / (mean - stddv - mintr);
bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
cdfactor *= 2.f;
}
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel #pragma omp parallel
#endif #endif
{ {
// float absciss; float absciss;
float cdmax = -999999.f, cdmin = 999999.f;
float gan = 0.5f;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp for schedule(dynamic,16) #pragma omp for schedule(dynamic,16)
#endif #endif
for (int i = 0; i < H_L; i ++) for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) { for (int j = 0; j < W_L; j++) { //for mintr to maxtr evalate absciss in function of original transmission
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
if (hasRetGainCurve) { absciss = asig * luminance[i][j] + bsig;
float absciss; } else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) { } else { /*if(luminance[i][j] <= mean - stddv)*/
absciss = asig * luminance[i][j] + bsig; absciss = amin * luminance[i][j] + bmin;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else {
absciss = amin * luminance[i][j] + bmin;
}
gan = locRETgainCcurve[absciss]; //new gain function transmission
} }
float cd = gan * cdfactor * luminance[i][j] + offse; //TODO : move multiplication by 4.f and subtraction of 1.f inside the curve
luminance[i][j] *= (-1.f + 4.f * locRETtransCcurve[absciss]); //new transmission
cdmax = cd > cdmax ? cd : cdmax;
cdmin = cd < cdmin ? cd : cdmin;
luminance[i][j] = intp(str, clipretinex(cd, 0.f, maxclip), originalLuminance[i][j]);
} }
}
}
float epsil = 0.1f;
mini = mean - vart * stddv;
if (mini < mintr) {
mini = mintr + epsil;
}
maxi = mean + vart * stddv;
if (maxi > maxtr) {
maxi = maxtr - epsil;
}
delta = maxi - mini;
// printf("maxi=%f mini=%f mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", maxi, mini, mean, stddv, delta, maxtr, mintr);
if (!delta) {
delta = 1.0f;
}
float cdfactor = (clipt * 32768.f) / delta;
maxCD = -9999999.f;
minCD = 9999999.f;
//prepare work for curve gain
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
luminance[i][j] = luminance[i][j] - mini;
}
}
mean = 0.f;
stddv = 0.f;
// I call mean_stddv2 instead of mean_stddv ==> logBetaGain
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
float asig = 0.f, bsig = 0.f, amax = 0.f, bmax = 0.f, amin = 0.f, bmin = 0.f;
const bool hasRetGainCurve = locRETgainCcurve && mean != 0.f && stddv != 0.f;
if (hasRetGainCurve) { //if curve
asig = 0.166666f / stddv;
bsig = 0.5f - asig * mean;
amax = 0.333333f / (maxtr - mean - stddv);
bmax = 1.f - amax * maxtr;
amin = 0.333333f / (mean - stddv - mintr);
bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
cdfactor *= 2.f;
}
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp critical #pragma omp parallel
#endif #endif
{ {
maxCD = maxCD > cdmax ? maxCD : cdmax; // float absciss;
minCD = minCD < cdmin ? minCD : cdmin; float cdmax = -999999.f, cdmin = 999999.f;
} float gan = 0.5f;
}
} else {
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp for schedule(dynamic,16) #pragma omp for schedule(dynamic,16)
#endif #endif
for (int i = 0; i < H_L; i ++) for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) { for (int j = 0; j < W_L; j++) {
luminance[i][j] = LIM(luminance[i][j], 0.f, maxclip) * str + (1.f - str) * originalLuminance[i][j];
if (hasRetGainCurve) {
float absciss;
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
absciss = asig * luminance[i][j] + bsig;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else {
absciss = amin * luminance[i][j] + bmin;
}
gan = locRETgainCcurve[absciss]; //new gain function transmission
}
float cd = gan * cdfactor * luminance[i][j] + offse;
cdmax = cd > cdmax ? cd : cdmax;
cdmin = cd < cdmin ? cd : cdmin;
luminance[i][j] = intp(str * reducDE[i][j], clipretinex(cd, 0.f, maxclip), originalLuminance[i][j]);
} }
}
if (lum == 1 && (llretiMask == 3 || llretiMask == 0 || llretiMask == 2 || llretiMask == 4)) { //only mask with luminance on last scale
int before = 1; #ifdef _OPENMP
maskforretinex(sp, before, luminance, nullptr, W_L, H_L, skip, locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, retiMasktmap, retiMask, #pragma omp critical
loc, bufreti, bufmask, buforig, buforigmas, multiThread); #endif
{
maxCD = maxCD > cdmax ? maxCD : cdmax;
minCD = minCD < cdmin ? minCD : cdmin;
}
} }
Tmean = mean; } else {
Tsigma = stddv; #ifdef _OPENMP
Tmin = mintr; #pragma omp for schedule(dynamic,16)
Tmax = maxtr; #endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
luminance[i][j] = LIM(luminance[i][j], 0.f, maxclip) * str + (1.f - str) * originalLuminance[i][j];
}
} }
if (lum == 1 && (llretiMask == 3 || llretiMask == 0 || llretiMask == 2 || llretiMask == 4)) { //only mask with luminance on last scale
int before = 1;
maskforretinex(sp, before, luminance, nullptr, W_L, H_L, skip, locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, retiMasktmap, retiMask,
loc, bufreti, bufmask, buforig, buforigmas, multiThread);
}
Tmean = mean;
Tsigma = stddv;
Tmin = mintr;
Tmax = maxtr;
}
} }
} }

View File

@ -2585,14 +2585,14 @@ LocallabParams::LocallabSpot::LocallabSpot() :
offs(0.0), offs(0.0),
dehaz(0), dehaz(0),
depth(25), depth(25),
sensih(30), sensih(60),
localTgaincurve{(double)FCT_MinMaxCPoints, 0.0, 0.12, 0.35, 0.35, 0.70, 0.50, 0.35, 0.35, 1.00, 0.12, 0.35, 0.35}, localTgaincurve{(double)FCT_MinMaxCPoints, 0.0, 0.12, 0.35, 0.35, 0.70, 0.50, 0.35, 0.35, 1.00, 0.12, 0.35, 0.35},
localTtranscurve{(double)FCT_MinMaxCPoints, 0.0, 0.50, 0.35, 0.35, 0.5, 0.5, 0.35, 0.35, 1.00, 0.50, 0.35, 0.35}, localTtranscurve{(double)FCT_MinMaxCPoints, 0.0, 0.50, 0.35, 0.35, 0.5, 0.5, 0.35, 0.35, 1.00, 0.50, 0.35, 0.35},
inversret(false), inversret(false),
equilret(true), equilret(true),
loglin(false), loglin(false),
lumonly(false), lumonly(false),
softradiusret(0.0), softradiusret(40.0),
CCmaskreticurve{(double)FCT_MinMaxCPoints, 0.0, 1.0, 0.35, 0.35, 0.50, 1.0, 0.35, 0.35, 1.0, 1.0, 0.35, 0.35 }, CCmaskreticurve{(double)FCT_MinMaxCPoints, 0.0, 1.0, 0.35, 0.35, 0.50, 1.0, 0.35, 0.35, 1.0, 1.0, 0.35, 0.35 },
LLmaskreticurve{(double)FCT_MinMaxCPoints, 0.0, 1.0, 0.35, 0.35, 0.50, 1.0, 0.35, 0.35, 1.0, 1.0, 0.35, 0.35}, LLmaskreticurve{(double)FCT_MinMaxCPoints, 0.0, 1.0, 0.35, 0.35, 0.50, 1.0, 0.35, 0.35, 1.0, 1.0, 0.35, 0.35},
HHmaskreticurve{(double)FCT_MinMaxCPoints, 0.0, 1.0, 0.35, 0.35, 0.50, 1.0, 0.35, 0.35, 1.0, 1.0, 0.35, 0.35}, HHmaskreticurve{(double)FCT_MinMaxCPoints, 0.0, 1.0, 0.35, 0.35, 0.50, 1.0, 0.35, 0.35, 1.0, 1.0, 0.35, 0.35},

View File

@ -273,8 +273,8 @@ Locallab::Locallab():
offs(Gtk::manage(new Adjuster(M("TP_LOCALLAB_OFFS"), -16386., 32768., 1., 0.))), offs(Gtk::manage(new Adjuster(M("TP_LOCALLAB_OFFS"), -16386., 32768., 1., 0.))),
dehaz(Gtk::manage(new Adjuster(M("TP_LOCALLAB_DEHAZ"), 0, 100, 1, 0))), dehaz(Gtk::manage(new Adjuster(M("TP_LOCALLAB_DEHAZ"), 0, 100, 1, 0))),
depth(Gtk::manage(new Adjuster(M("TP_LOCALLAB_DEPTH"), 0, 100, 1, 25))), depth(Gtk::manage(new Adjuster(M("TP_LOCALLAB_DEPTH"), 0, 100, 1, 25))),
sensih(Gtk::manage(new Adjuster(M("TP_LOCALLAB_SENSIH"), 0, 100, 1, 30))), sensih(Gtk::manage(new Adjuster(M("TP_LOCALLAB_SENSIH"), 0, 100, 1, 60))),
softradiusret(Gtk::manage(new Adjuster(M("TP_LOCALLAB_GUIDFILTER"), 0.0, 100.0, 0.5, 0.))), softradiusret(Gtk::manage(new Adjuster(M("TP_LOCALLAB_SOFTRETI"), 0.0, 100.0, 0.5, 40.))),
blendmaskreti(Gtk::manage(new Adjuster(M("TP_LOCALLAB_BLENDMASKCOL"), -100, 100, 1, 0))), blendmaskreti(Gtk::manage(new Adjuster(M("TP_LOCALLAB_BLENDMASKCOL"), -100, 100, 1, 0))),
radmaskreti(Gtk::manage(new Adjuster(M("TP_LOCALLAB_RADMASKCOL"), 0.0, 100.0, 0.1, 10.))), radmaskreti(Gtk::manage(new Adjuster(M("TP_LOCALLAB_RADMASKCOL"), 0.0, 100.0, 0.1, 10.))),
chromaskreti(Gtk::manage(new Adjuster(M("TP_LOCALLAB_CHROMASKCOL"), -100.0, 100.0, 0.1, 0.))), chromaskreti(Gtk::manage(new Adjuster(M("TP_LOCALLAB_CHROMASKCOL"), -100.0, 100.0, 0.1, 0.))),
@ -1370,7 +1370,7 @@ Locallab::Locallab():
softradiusret->setAdjusterListener(this); softradiusret->setAdjusterListener(this);
if (showtooltip) { if (showtooltip) {
softradiusret->set_tooltip_text(M("TP_LOCALLAB_GUIDFILTER_TOOLTIP")); softradiusret->set_tooltip_text(M("TP_LOCALLAB_SOFTRETI_TOOLTIP"));
} }
mMLabels = Gtk::manage(new Gtk::Label("---")); mMLabels = Gtk::manage(new Gtk::Label("---"));
@ -1527,7 +1527,7 @@ Locallab::Locallab():
retiBox->pack_start(*scalereti); retiBox->pack_start(*scalereti);
retiBox->pack_start(*darkness); retiBox->pack_start(*darkness);
retiBox->pack_start(*lightnessreti); retiBox->pack_start(*lightnessreti);
// retiBox->pack_start(*softradiusret); retiBox->pack_start(*softradiusret);
retiBox->pack_start(*limd); retiBox->pack_start(*limd);
retiBox->pack_start(*cliptm); retiBox->pack_start(*cliptm);
retiBox->pack_start(*offs); retiBox->pack_start(*offs);