diff --git a/rtengine/PF_correct_RT.cc b/rtengine/PF_correct_RT.cc index 343d6c935..eef63463e 100644 --- a/rtengine/PF_correct_RT.cc +++ b/rtengine/PF_correct_RT.cc @@ -6,6 +6,7 @@ // // // code dated: November 24, 2010 +// optimized: September 2013, Ingo Weyrich // // PF_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by @@ -23,21 +24,565 @@ //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - #include "gauss.h" #include "improcfun.h" #include "sleef.c" #include "mytime.h" #include "../rtgui/myflatcurve.h" +#include "rt_math.h" + +#ifdef __SSE2__ +#include "sleefsseavx.c" +#endif #ifdef _OPENMP #include #endif -#include "rt_math.h" -#define PIX_SORT(a,b) { if ((a)>(b)) {temp=(a);(a)=(b);(b)=temp;} } +using namespace std; +namespace rtengine { +extern const Settings* settings; + +#if defined( __SSE2__ ) && defined( WIN32 ) +__attribute__((force_align_arg_pointer)) void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh) +#else +void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh) +#endif +{ + const int halfwin = ceil(2*radius)+1; + + FlatCurve* chCurve = NULL; + if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) + chCurve = new FlatCurve(params->defringe.huecurve); + + // local variables + const int width=src->W, height=src->H; + //temporary array to store chromaticity + float (*fringe); + fringe = (float (*)) malloc (height * width * sizeof(*fringe)); + + LabImage * tmp1; + tmp1 = new LabImage(width, height); + +#ifdef _OPENMP +#pragma omp parallel +#endif + { + AlignedBufferMP buffer(max(src->W,src->H)); + gaussHorizontal (src->a, tmp1->a, buffer, src->W, src->H, radius); + gaussHorizontal (src->b, tmp1->b, buffer, src->W, src->H, radius); + gaussVertical (tmp1->a, tmp1->a, buffer, src->W, src->H, radius); + gaussVertical (tmp1->b, tmp1->b, buffer, src->W, src->H, radius); + } + +float chromave=0.0f; + +#ifdef __SSE2__ + if( chCurve ) { +// vectorized precalculation of the atan2 values +#ifdef _OPENMP +#pragma omp parallel +#endif + { + int j; +#ifdef _OPENMP +#pragma omp for +#endif + for(int i = 0; i < height; i++ ) { + for(j = 0; j < width-3; j+=4) + _mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(src->b[i][j]),LVFU(src->a[i][j]))); + for(; j < width; j++) + fringe[i*width+j]=xatan2f(src->b[i][j],src->a[i][j]); + } + } + } +#endif + +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + float chromaChfactor = 1.0f; +#ifdef _OPENMP +#pragma omp for reduction(+:chromave) +#endif + for(int i = 0; i < height; i++ ) { + for(int j = 0; j < width; j++) { + if (chCurve) { +#ifdef __SSE2__ + // use the precalculated atan values + float HH=fringe[i*width+j]; +#else + // no precalculated values without SSE => calculate + float HH=xatan2f(src->b[i][j],src->a[i][j]); +#endif + double hr; + Color::huelab_to_huehsv (HH, hr); + float chparam = float((chCurve->getVal(hr)-0.5f) * 2.0f);//get C=f(H) + if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0 + chromaChfactor=1.0f+chparam; + } + float chroma = SQR(chromaChfactor*(src->a[i][j]-tmp1->a[i][j]))+SQR(chromaChfactor*(src->b[i][j]-tmp1->b[i][j]));//modulate chroma function hue + chromave += chroma; + fringe[i*width+j]=chroma; + } + } +} + + chromave /= (height*width); + float threshfactor = SQR(thresh/33.f)*chromave*5.0f; + + +// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future +#ifdef __SSE2__ +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + __m128 sumv = _mm_set1_ps( chromave ); + __m128 onev = _mm_set1_ps( 1.0f ); +#ifdef _OPENMP +#pragma omp for +#endif + for(int j=0; j < width*height-3; j+=4) + _mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv)); +} + for(int j=width*height - (width*height)%4; j < width*height; j++) + fringe[j] = 1.f/(fringe[j]+chromave); +#else +#ifdef _OPENMP +#pragma omp parallel for +#endif + for(int j = 0; j < width*height; j++) + fringe[j] = 1.f/(fringe[j]+chromave); +#endif + + // because we changed the values of fringe we also have to recalculate threshfactor + threshfactor = 1.0f/(threshfactor + chromave); + +// Issue 1674: +// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. +// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work +// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better +// choice for the chunk_size than 16 +// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations +#ifdef _OPENMP +#pragma omp parallel for schedule(dynamic,16) +#endif + for(int i = 0; i < height; i++ ) { + int j; + for(j = 0; j < halfwin-1; j++) { + tmp1->a[i][j] = src->a[i][j]; + tmp1->b[i][j] = src->b[i][j]; + //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average + /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ + /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ + if (fringe[i*width+j]a[i1][j1]; + btot += wt*src->b[i1][j1]; + norm += wt; + } + tmp1->a[i][j] = atot/norm; + tmp1->b[i][j] = btot/norm; + } + } + for(; j < width-halfwin+1; j++) { + tmp1->a[i][j] = src->a[i][j]; + tmp1->b[i][j] = src->b[i][j]; + //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average + /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ + /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ + if (fringe[i*width+j]a[i1][j1]; + btot += wt*src->b[i1][j1]; + norm += wt; + } + tmp1->a[i][j] = atot/norm; + tmp1->b[i][j] = btot/norm; + } + } + for(; j < width; j++) { + tmp1->a[i][j] = src->a[i][j]; + tmp1->b[i][j] = src->b[i][j]; + //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average + /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ + /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ + if (fringe[i*width+j]a[i1][j1]; + btot += wt*src->b[i1][j1]; + norm += wt; + } + tmp1->a[i][j] = atot/norm; + tmp1->b[i][j] = btot/norm; + } + } + }//end of ab channel averaging + + if(src != dst) +#ifdef _OPENMP +#pragma omp parallel for +#endif + for(int i = 0; i < height; i++ ) { + for(int j = 0; j < width; j++) { + dst->L[i][j] = src->L[i][j]; + } + } + +#ifdef _OPENMP +#pragma omp parallel for +#endif + for(int i = 0; i < height; i++ ) { + for(int j = 0; j < width; j++) { + dst->a[i][j] = tmp1->a[i][j]; + dst->b[i][j] = tmp1->b[i][j]; + } + } + + + delete tmp1; + if(chCurve) delete chCurve; + free(fringe); +} +#if defined( __SSE2__ ) && defined( WIN32 ) +__attribute__((force_align_arg_pointer)) void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh) +#else +void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh) +#endif +{ + const int halfwin = ceil(2*radius)+1; + + FlatCurve* chCurve = NULL; + if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) + chCurve = new FlatCurve(params->defringe.huecurve); + + // local variables + const int width=src->W, height=src->H; + const float piid=3.14159265f/180.f; + const float eps2=0.01f; + + //temporary array to store chromaticity + float (*fringe); + fringe = (float (*)) malloc (height * width * sizeof(*fringe)); + + float** sraa; + sraa = new float*[height]; + for (int i=0; ih_p[i][j])); + _mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y); + _mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x); + } + for (; jh_p[i][j]); + sraa[i][j]=src->C_p[i][j]*sincosval.y; + srbb[i][j]=src->C_p[i][j]*sincosval.x; + } +#else + for (int j=0; jh_p[i][j]); + sraa[i][j]=src->C_p[i][j]*sincosval.y; + srbb[i][j]=src->C_p[i][j]*sincosval.x; + } +#endif + } +} + +#ifdef _OPENMP +#pragma omp parallel +#endif + { + AlignedBufferMP buffer(max(src->W,src->H)); + gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); + gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); + gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); + gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); + } + +float chromave=0.0f; + +#ifdef __SSE2__ +if( chCurve ) { +// vectorized precalculation of the atan2 values +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + int j; +#ifdef _OPENMP +#pragma omp for +#endif + for(int i = 0; i < height; i++ ) { + for(j = 0; j < width-3; j+=4) + _mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(srbb[i][j]),LVFU(sraa[i][j]))); + for(; j < width; j++) + fringe[i*width+j]=xatan2f(srbb[i][j],sraa[i][j]); + } +} +} +#endif + +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + float chromaChfactor = 1.0f; +#ifdef _OPENMP +#pragma omp for reduction(+:chromave) +#endif + for(int i = 0; i < height; i++ ) { + for(int j = 0; j < width; j++) { + if (chCurve) { +#ifdef __SSE2__ + // use the precalculated atan values + float HH=fringe[i*width+j]; +#else + // no precalculated values without SSE => calculate + float HH=xatan2f(srbb[i][j],sraa[i][j]); +#endif + double hr; + Color::huelab_to_huehsv (HH, hr); //approximation Cam / Lab + float chparam = float((chCurve->getVal(hr)-0.5f) * 2.0f);//get C=f(H) + if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0 + chromaChfactor=1.0f+chparam; + } + float chroma = SQR(chromaChfactor*(sraa[i][j]-tmaa[i][j]))+SQR(chromaChfactor*(srbb[i][j]-tmbb[i][j]));//modulate chroma function hue + chromave += chroma; + fringe[i*width+j]=chroma; + } + } +} + + chromave /= (height*width); + float threshfactor = SQR(thresh/33.f)*chromave*5.0f; // Calculated once to eliminate mult inside the next loop + +// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future +#ifdef __SSE2__ +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + __m128 sumv = _mm_set1_ps( chromave + eps2 ); + __m128 onev = _mm_set1_ps( 1.0f ); +#ifdef _OPENMP +#pragma omp for +#endif + for(int j=0; j < width*height-3; j+=4) + _mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv)); +} + for(int j=width*height - (width*height)%4; j < width*height; j++) + fringe[j] = 1.f/(fringe[j]+chromave+eps2); +#else +#ifdef _OPENMP +#pragma omp parallel for +#endif + for(int j = 0; j < width*height; j++) + fringe[j] = 1.f/(fringe[j]+chromave+eps2); +#endif + + // because we changed the values of fringe we also have to recalculate threshfactor + threshfactor = 1.0f/(threshfactor + chromave + eps2); + +// Issue 1674: +// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. +// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work +// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better +// choice for the chunk_size than 16 +// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations +#ifdef _OPENMP +#pragma omp parallel for schedule(dynamic,16) +#endif + for(int i = 0; i < height; i++ ) { + int j; + for(j = 0; j < halfwin-1; j++) { + tmaa[i][j] = sraa[i][j]; + tmbb[i][j] = srbb[i][j]; + + if (fringe[i*width+j] 0.f){ + tmaa[i][j] = (atot/norm); + tmbb[i][j] = (btot/norm); + } + } + } + for(; j < width-halfwin+1; j++) { + tmaa[i][j] = sraa[i][j]; + tmbb[i][j] = srbb[i][j]; + + if (fringe[i*width+j] 0.f){ + tmaa[i][j] = (atot/norm); + tmbb[i][j] = (btot/norm); + } + } + } + for(; j < width; j++) { + tmaa[i][j] = sraa[i][j]; + tmbb[i][j] = srbb[i][j]; + + if (fringe[i*width+j] 0.f){ + tmaa[i][j] = (atot/norm); + tmbb[i][j] = (btot/norm); + } + } + } + } //end of ab channel averaging + + +#ifdef _OPENMP +#pragma omp parallel +#endif +{ +#ifdef __SSE2__ + int j; + __m128 interav, interbv; + __m128 piidv = _mm_set1_ps(piid); +#endif +#ifdef _OPENMP +#pragma omp for +#endif + for(int i = 0; i < height; i++ ) { +#ifdef __SSE2__ + for(j = 0; j < width-3; j+=4) { + _mm_storeu_ps( &dst->sh_p[i][j], LVFU(src->sh_p[i][j])); + interav = LVFU(tmaa[i][j]); + interbv = LVFU(tmbb[i][j]); + _mm_storeu_ps(&dst->h_p[i][j],(xatan2f(interbv,interav))/piidv); + _mm_storeu_ps(&dst->C_p[i][j],_mm_sqrt_ps(SQRV(interbv)+SQRV(interav))); + } + for(; j < width; j++) { + dst->sh_p[i][j] = src->sh_p[i][j]; + float intera = tmaa[i][j]; + float interb = tmbb[i][j]; + dst->h_p[i][j]=(xatan2f(interb,intera))/piid; + dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); + } +#else + for(int j = 0; j < width; j++) { + dst->sh_p[i][j] = src->sh_p[i][j]; + float intera = tmaa[i][j]; + float interb = tmbb[i][j]; + dst->h_p[i][j]=(xatan2f(interb,intera))/piid; + dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); + } +#endif + } +} + + for (int i=0; i(b)) {temp=(a);(a)=(b);(b)=temp;} } #define med3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \ pp[0]=a0; pp[1]=a1; pp[2]=a2; pp[3]=a3; pp[4]=a4; pp[5]=a5; pp[6]=a6; pp[7]=a7; pp[8]=a8; \ @@ -49,366 +594,113 @@ PIX_SORT(pp[3],pp[6]); PIX_SORT(pp[1],pp[4]); PIX_SORT(pp[2],pp[5]); \ PIX_SORT(pp[4],pp[7]); PIX_SORT(pp[4],pp[2]); PIX_SORT(pp[6],pp[4]); \ PIX_SORT(pp[4],pp[2]); median=pp[4];} //pp4 = median -using namespace std; - -namespace rtengine { -extern const Settings* settings; - -void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh) { - int halfwin = ceil(2*radius)+1; - -#include "rt_math.h" - - FlatCurve* chCurve = NULL; - if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) - chCurve = new FlatCurve(params->defringe.huecurve); - - // local variables - int width=src->W, height=src->H; - //temporary array to store chromaticity - int (*fringe); - fringe = (int (*)) calloc ((height)*(width), sizeof *fringe); - - LabImage * tmp1; - tmp1 = new LabImage(width, height); - -#ifdef _OPENMP -#pragma omp parallel +#if defined( __SSE2__ ) && defined( WIN32 ) +__attribute__((force_align_arg_pointer)) void ImProcFunctions::Badpixelscam(CieImage * src, CieImage * dst, double radius, int thresh, int mode) +#else +void ImProcFunctions::Badpixelscam(CieImage * src, CieImage * dst, double radius, int thresh, int mode) #endif - { - AlignedBufferMP buffer(max(src->W,src->H)); - - gaussHorizontal (src->a, tmp1->a, buffer, src->W, src->H, radius); - gaussHorizontal (src->b, tmp1->b, buffer, src->W, src->H, radius); - gaussVertical (tmp1->a, tmp1->a, buffer, src->W, src->H, radius); - gaussVertical (tmp1->b, tmp1->b, buffer, src->W, src->H, radius); - -// gaussHorizontal (src->L, tmp1->L, buffer, src->W, src->H, radius); -// gaussVertical (tmp1->L, tmp1->L, buffer, src->W, src->H, radius); - } - -float chromave=0; -#ifdef _OPENMP -#pragma omp parallel for reduction(+:chromave) -#endif - for(int i = 0; i < height; i++ ) { - for(int j = 0; j < width; j++) { - float HH=xatan2f(src->b[i][j],src->a[i][j]); - double hr; - float chromaChfactor=1.0f; - if (chCurve) { - Color::huelab_to_huehsv (HH, hr); - float chparam = float((chCurve->getVal(hr)-0.5f) * 2.0f);//get C=f(H) - if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0 - chromaChfactor=1.0f+chparam; - } - float chroma = SQR(chromaChfactor*(src->a[i][j]-tmp1->a[i][j]))+SQR(chromaChfactor*(src->b[i][j]-tmp1->b[i][j]));//modulate chroma function hue - chromave += chroma; - fringe[i*width+j]=chroma; - } - } - chromave /= (height*width); - float threshfactor = SQR(thresh/33.f)*chromave*5.0f; -// printf("Chro %f \n",chromave); - -// Issue 1674: -// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. -// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work -// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better -// choice for the chunk_size than 16 -#ifdef _OPENMP -#pragma omp parallel for schedule(dynamic,16) -#endif - for(int i = 0; i < height; i++ ) { - for(int j = 0; j < width; j++) { - tmp1->a[i][j] = src->a[i][j]; - tmp1->b[i][j] = src->b[i][j]; - //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average - /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ - /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ - if (fringe[i*width+j]>threshfactor) { - float atot=0.f; - float btot=0.f; - float norm=0.f; - float wt; - for (int i1=max(0,i-halfwin+1); i1a[i1][j1]; - btot += wt*src->b[i1][j1]; - norm += wt; - } - tmp1->a[i][j] = (int)(atot/norm); - tmp1->b[i][j] = (int)(btot/norm); - }//end of ab channel averaging - } - } - -#ifdef _OPENMP -#pragma omp parallel for -#endif - - for(int i = 0; i < height; i++ ) { - for(int j = 0; j < width; j++) { - dst->L[i][j] = src->L[i][j]; - dst->a[i][j] = tmp1->a[i][j]; - dst->b[i][j] = tmp1->b[i][j]; - } - } - - delete tmp1; - if(chCurve) delete chCurve; - free(fringe); -} - -void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh) { - int halfwin = ceil(2*radius)+1; - -#include "rt_math.h" - FlatCurve* chCurve = NULL; - if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) - chCurve = new FlatCurve(params->defringe.huecurve); - - // local variables - int width=src->W, height=src->H; - float piid=3.14159265f/180.f; - static float eps2=0.01f; - //temporary array to store chromaticity - int (*fringe); - fringe = (int (*)) calloc ((height)*(width), sizeof *fringe); - - float** sraa; - sraa = new float*[height]; - for (int i=0; iC_p[i][j]*cos(piid*src->h_p[i][j]); - } - */ - float** tmaa; - tmaa = new float*[height]; - for (int i=0; ih_p[i][j]); - sraa[i][j]=src->C_p[i][j]*sincosval.y; - srbb[i][j]=src->C_p[i][j]*sincosval.x; - } - float** tmbb; - tmbb = new float*[height]; - for (int i=0; i buffer(max(src->W,src->H)); - gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); - gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); - gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); - gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); - // gaussHorizontal (src->sh_p, tmL, buffer, src->W, src->H, radius); - // gaussVertical (tmL, tmL, buffer, src->W, src->H, radius); - - } - -float chromave=0; -#ifdef _OPENMP -#pragma omp parallel for reduction(+:chromave) -#endif - for(int i = 0; i < height; i++ ) { - for(int j = 0; j < width; j++) { - float HH=xatan2f(srbb[i][j],sraa[i][j]); //piid*src->h_p[i][j]; - float chromaChfactor=1.0f; - double hr; - if (chCurve) { - Color::huelab_to_huehsv (HH, hr); //approximation Cam / Lab - float chparam = float((chCurve->getVal(hr)-0.5f) * 2.0f);//get C=f(H) - if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0 - chromaChfactor=1.0f+chparam; - } - float chroma = SQR(chromaChfactor*(sraa[i][j]-tmaa[i][j]))+SQR(chromaChfactor*(srbb[i][j]-tmbb[i][j]));//modulate chroma function hue - - - - // float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]); - chromave += chroma; - fringe[i*width+j]=chroma; - } - } - chromave /= (height*width); - float threshfactor = SQR(thresh/33.f)*chromave*5.0f; // Calculated once to eliminate mult inside the next loop - // printf("Chromave CAM %f \n",chromave); - -// Issue 1674: -// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. -// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work -// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better -// choice for the chunk_size than 16 -#ifdef _OPENMP -#pragma omp parallel for schedule(dynamic,16) -#endif - for(int i = 0; i < height; i++ ) { - for(int j = 0; j < width; j++) { - tmaa[i][j] = sraa[i][j]; - tmbb[i][j] = srbb[i][j]; - - //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average - /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ - /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ - if (fringe[i*width+j]>threshfactor) { - float atot=0.f; - float btot=0.f; - float norm=0.f; - float wt; - for (int i1=max(0,i-halfwin+1); i1 0.f){ - tmaa[i][j] = (atot/norm); - tmbb[i][j] = (btot/norm); - } - }//end of ab channel averaging - } - } - -#ifdef _OPENMP -#pragma omp parallel for -#endif - - for(int i = 0; i < height; i++ ) { - for(int j = 0; j < width; j++) { - dst->sh_p[i][j] = src->sh_p[i][j]; - float intera = tmaa[i][j]; - float interb = tmbb[i][j]; - dst->h_p[i][j]=(xatan2f(interb,intera))/piid; - dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); - } - } - for (int i=0; iciebadpixgauss; - int width=src->W, height=src->H; - float piid=3.14159265f/180.f; + + const int width=src->W, height=src->H; + const float piid=3.14159265f/180.f; float shfabs, shmed; + int i1, j1, tot; - static float eps = 1.0f; - static float eps2 =0.01f; + const float eps = 1.0f; + const float eps2 = 0.01f; float shsum, dirsh, norm, sum; float** sraa; - sraa = new float*[height]; - for (int i=0; ih_p[i][j]); - sraa[i][j]=src->C_p[i][j]*sincosval.y; - srbb[i][j]=src->C_p[i][j]*sincosval.x; - } - float** tmbb; - tmbb = new float*[height]; for (int i=0; ih_p[i][j])); + _mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y); + _mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x); + } + for (; jh_p[i][j]); + sraa[i][j]=src->C_p[i][j]*sincosval.y; + srbb[i][j]=src->C_p[i][j]*sincosval.x; + } +#else + for (int j=0; jh_p[i][j]); + sraa[i][j]=src->C_p[i][j]*sincosval.y; + srbb[i][j]=src->C_p[i][j]*sincosval.x; + } +#endif + } +} + #ifdef _OPENMP #pragma omp parallel #endif { - AlignedBufferMP buffer(max(src->W,src->H)); - //chroma a and b - if(mode==2) {//choice of gaussian blur + AlignedBufferMP buffer(max(src->W,src->H)); + //chroma a and b + if(mode==2) {//choice of gaussian blur gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); - } - //luma sh_p - gaussHorizontal (src->sh_p, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts - gaussVertical (tmL, tmL, buffer, src->W, src->H, 2.0); - } + //luma sh_p + gaussHorizontal (src->sh_p, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts + gaussVertical (tmL, tmL, buffer, src->W, src->H, 2.0); + } + if(mode==1){ //choice of median #pragma omp parallel { -#pragma omp for + int ip,in,jp,jn; + float pp[9],temp; +#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jsh_p[i][j]-tmL[i][j]); - for (i1=max(0,i-2), shmed=0; i1<=min(i+2,height-1); i1++ ) - for (j1=max(0,j-2); j1<=min(j+2,width-1); j1++ ) { + shmed=0.0f; + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=0; j1<=j+2; j1++ ) { shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); } - badpix[i][j] = (shfabs>((shmed-shfabs)*shthr)); + badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); + } + +#ifdef __SSE2__ + for (; j < width-5; j+=4) { + shfabsv = vabsf(LVFU(src->sh_p[i][j])-LVFU(tmL[i][j])); + shmedv = _mm_setzero_ps(); + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=j-2; j1<=j+2; j1++ ) { + shmedv += vabsf(LVFU(src->sh_p[i1][j1])-LVFU(tmL[i1][j1])); + } + _mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps())); + } + for (; j < width-2; j++) { + shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); + shmed=0.0f; + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=j-2; j1<=j+2; j1++ ) { + shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); + } + badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); + } +#else + for (; j < width-2; j++) { + shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); + shmed=0.0f; + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=j-2; j1<=j+2; j1++ ) { + shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); + } + badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } -#ifdef _OPENMP - #pragma omp parallel for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) #endif - for (int i=0; i < height; i++) - for (int j=0; j < width; j++) { - if (!badpix[i][j]) continue; + for (; j < width; j++) { + shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); + shmed=0.0f; + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=j-2; j1sh_p[i1][j1]-tmL[i1][j1]); + } + badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); + } + } +} + + +#ifdef _OPENMP +#pragma omp parallel +#endif +{ + int j; +#ifdef _OPENMP +#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) +#endif + for (int i=0; i < height; i++) { + for (j=0; j < 2; j++) { + if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; - for (i1=max(0,i-2), shmed=0; i1<=min(i+2,height-1); i1++ ) - for (j1=max(0,j-2); j1<=min(j+2,width-1); j1++ ) { + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=0; j1<=j+2; j1++ ) { if (i1==i && j1==j) continue; - if (badpix[i1][j1]) continue; - sum += src->sh_p[i1][j1]; tot++; + if (badpix[i1*width+j1]) continue; + sum += src->sh_p[i1][j1]; + tot++; dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); shsum += dirsh*src->sh_p[i1][j1]; norm += dirsh; @@ -474,8 +825,57 @@ float shthr = sh_thr / 24.0f; if(tot > 0) src->sh_p[i][j]=sum / tot; } } + for (; j < width-2; j++) { + if (!badpix[i*width+j]) continue; + norm=0.0f; + shsum=0.0f; + sum=0.0f; + tot=0; + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=j-2; j1<=j+2; j1++ ) { + if (i1==i && j1==j) continue; + if (badpix[i1*width+j1]) continue; + sum += src->sh_p[i1][j1]; + tot++; + dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); + shsum += dirsh*src->sh_p[i1][j1]; + norm += dirsh; + } + if (norm > 0.f) { + src->sh_p[i][j]=shsum/norm; + } + else { + if(tot > 0) src->sh_p[i][j]=sum / tot; + } + } + for (; j < width; j++) { + if (!badpix[i*width+j]) continue; + norm=0.0f; + shsum=0.0f; + sum=0.0f; + tot=0; + for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) + for (j1=j-2; j1sh_p[i1][j1]; + tot++; + dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); + shsum += dirsh*src->sh_p[i1][j1]; + norm += dirsh; + } + if (norm > 0.f) { + src->sh_p[i][j]=shsum/norm; + } + else { + if(tot > 0) src->sh_p[i][j]=sum / tot; + } + } + } +} // end luma badpixels + // begin chroma badpixels float chrommed=0.f; #ifdef _OPENMP @@ -485,28 +885,108 @@ float chrommed=0.f; for(int j = 0; j < width; j++) { float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]); chrommed += chroma; - badpix[i][j]=chroma; + badpix[i*width+j]=chroma; } } chrommed /= (height*width); float threshfactor = (thresh*chrommed)/33.f; +// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future +#ifdef __SSE2__ #ifdef _OPENMP -#pragma omp parallel for schedule(dynamic,16) +#pragma omp parallel +#endif +{ + int j; + __m128 sumv = _mm_set1_ps( chrommed + eps2 ); + __m128 onev = _mm_set1_ps( 1.0f ); +#ifdef _OPENMP +#pragma omp for +#endif + for(int i = 0; ithreshfactor) { + if (badpix[i*width+j] 0.f){ + tmaa[i][j] = (atot/norm); + tmbb[i][j] = (btot/norm); + } + } + } + for(; j < width-halfwin; j++) { + tmaa[i][j] = sraa[i][j]; + tmbb[i][j] = srbb[i][j]; + + if (badpix[i*width+j] 0.f){ + tmaa[i][j] = (atot/norm); + tmbb[i][j] = (btot/norm); + } + } + } + for(; j < width; j++) { + tmaa[i][j] = sraa[i][j]; + tmbb[i][j] = srbb[i][j]; + + if (badpix[i*width+j]sh_p[i][j] = src->sh_p[i][j]; +#ifdef __SSE2__ + for(j = 0; j < width-3; j+=4) { + interav = LVFU(tmaa[i][j]); + interbv = LVFU(tmbb[i][j]); + _mm_storeu_ps(&dst->h_p[i][j],(xatan2f(interbv,interav))/piidv); + _mm_storeu_ps(&dst->C_p[i][j],_mm_sqrt_ps(SQRV(interbv)+SQRV(interav))); + } + for(; j < width; j++) { float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } +#else + for(int j = 0; j < width; j++) { + float intera = tmaa[i][j]; + float interb = tmbb[i][j]; + dst->h_p[i][j]=(xatan2f(interb,intera))/piid; + dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); + } +#endif } - for (int i=0; ish_p[i][j] = src->sh_p[i][j]; + } + + + for (int i=0; iverbose ) @@ -559,4 +1075,3 @@ float chrommed=0.f; } #undef PIX_SORT #undef med3 -