2-pass dual-demosaic-contrast-threshold detection if 1-pass does not find a flat area, #4866
This commit is contained in:
@@ -204,80 +204,87 @@ void buildBlendMask(float** luminance, float **blend, int W, int H, float contra
|
||||
constexpr float scale = 0.0625f / 327.68f;
|
||||
if (autoContrast) {
|
||||
StopWatch StopC("calculate dual demosaic auto contrast threshold");
|
||||
constexpr int tilesize = 80;
|
||||
const int numTilesW = W / tilesize;
|
||||
const int numTilesH = H / tilesize;
|
||||
std::vector<std::vector<std::pair<float, float>>> variances(numTilesH, std::vector<std::pair<float, float>>(numTilesW));
|
||||
for (int pass = 0; pass < 2; ++pass) {
|
||||
const int tilesize = 80 / (pass + 1);
|
||||
const int numTilesW = W / tilesize;
|
||||
const int numTilesH = H / tilesize;
|
||||
std::vector<std::vector<std::pair<float, float>>> variances(numTilesH, std::vector<std::pair<float, float>>(numTilesW));
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < numTilesH; ++i) {
|
||||
int tileY = i * tilesize;
|
||||
for (int j = 0; j < numTilesW; ++j) {
|
||||
int tileX = j * tilesize;
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < numTilesH; ++i) {
|
||||
int tileY = i * tilesize;
|
||||
for (int j = 0; j < numTilesW; ++j) {
|
||||
int tileX = j * tilesize;
|
||||
#ifdef __SSE2__
|
||||
vfloat avgv = ZEROV;
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; x += 4) {
|
||||
avgv += LVFU(luminance[y][x]);
|
||||
vfloat avgv = ZEROV;
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; x += 4) {
|
||||
avgv += LVFU(luminance[y][x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
float avg = vhadd(avgv);
|
||||
float avg = vhadd(avgv);
|
||||
#else
|
||||
float avg = 0.;
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; ++x) {
|
||||
avg += luminance[y][x];
|
||||
float avg = 0.;
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; ++x) {
|
||||
avg += luminance[y][x];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
avg /= SQR(tilesize);
|
||||
avg /= SQR(tilesize);
|
||||
#ifdef __SSE2__
|
||||
vfloat varv = ZEROV;
|
||||
avgv = F2V(avg);
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; x +=4) {
|
||||
varv += SQRV(LVFU(luminance[y][x]) - avgv);
|
||||
vfloat varv = ZEROV;
|
||||
avgv = F2V(avg);
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; x +=4) {
|
||||
varv += SQRV(LVFU(luminance[y][x]) - avgv);
|
||||
}
|
||||
}
|
||||
}
|
||||
float var = vhadd(varv);
|
||||
float var = vhadd(varv);
|
||||
#else
|
||||
float var = 0.0;
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; ++x) {
|
||||
var += SQR(luminance[y][x] - avg);
|
||||
float var = 0.0;
|
||||
for (int y = tileY; y < tileY + tilesize; ++y) {
|
||||
for (int x = tileX; x < tileX + tilesize; ++x) {
|
||||
var += SQR(luminance[y][x] - avg);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
var /= (SQR(tilesize) * avg);
|
||||
variances[i][j].first = var;
|
||||
variances[i][j].second = avg;
|
||||
}
|
||||
}
|
||||
|
||||
float minvar = RT_INFINITY_F;
|
||||
int minI = 0, minJ = 0;
|
||||
for (int i = 0; i < numTilesH; ++i) {
|
||||
for (int j = 0; j < numTilesW; ++j) {
|
||||
if (variances[i][j].first < minvar && variances[i][j].second > 2000.f && variances[i][j].second < 20000.f) {
|
||||
minvar = variances[i][j].first;
|
||||
minI = i;
|
||||
minJ = j;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
var /= (SQR(tilesize) * avg);
|
||||
variances[i][j].first = var;
|
||||
variances[i][j].second = avg;
|
||||
}
|
||||
}
|
||||
|
||||
float minvar = RT_INFINITY_F;
|
||||
int minY = 0, minX = 0;
|
||||
for (int i = 0; i < numTilesH; ++i) {
|
||||
for (int j = 0; j < numTilesW; ++j) {
|
||||
if (variances[i][j].first < minvar && variances[i][j].second > 2000.f && variances[i][j].second < 20000.f) {
|
||||
minvar = variances[i][j].first;
|
||||
minY = tilesize * i;
|
||||
minX = tilesize * j;
|
||||
const int minY = tilesize * minI;
|
||||
const int minX = tilesize * minJ;
|
||||
std::cout << "minvar : " << minvar << std::endl;
|
||||
|
||||
// if (minvar <= 1.f || pass == 1) {
|
||||
// a variance <= 1 means we already found a flat region and can skip second pass
|
||||
JaggedArray<float> Lum(tilesize, tilesize);
|
||||
JaggedArray<float> Blend(tilesize, tilesize);
|
||||
for (int i = 0; i < tilesize; ++i) {
|
||||
for (int j = 0; j < tilesize; ++j) {
|
||||
Lum[i][j] = luminance[i + minY][j + minX];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// std::cout << "minY : " << minY << std::endl;
|
||||
// std::cout << "minX : " << minX << std::endl;
|
||||
// std::cout << "minvar : " << minvar << std::endl;
|
||||
|
||||
JaggedArray<float> Lum(tilesize, tilesize);
|
||||
JaggedArray<float> Blend(tilesize, tilesize);
|
||||
for (int i = 0; i < tilesize; ++i) {
|
||||
for (int j = 0; j < tilesize; ++j) {
|
||||
Lum[i][j] = luminance[i + minY][j + minX];
|
||||
}
|
||||
/*contrastThreshold = */calcContrastThreshold(Lum, Blend, tilesize, tilesize);// / 100.f;
|
||||
// break;
|
||||
// }
|
||||
}
|
||||
|
||||
calcContrastThreshold(Lum, Blend, tilesize, tilesize);
|
||||
}
|
||||
|
||||
#ifdef _OPENMP
|
||||
@@ -368,7 +375,7 @@ int calcContrastThreshold(float** luminance, float **blend, int W, int H) {
|
||||
}
|
||||
}
|
||||
|
||||
const float limit = (W - 2) * (H - 2) / 100.f;
|
||||
const float limit = (W - 4) * (H - 4) / 100.f;
|
||||
|
||||
int c;
|
||||
for (c = 1; c < 100; ++c) {
|
||||
|
Reference in New Issue
Block a user