Formatted all .cc and .h code in rtengine, rtexif and rtgui using astyle
This commit is contained in:
@@ -24,22 +24,29 @@
|
||||
#undef THREAD_PRIORITY_NORMAL
|
||||
#include "opthelper.h"
|
||||
|
||||
namespace rtengine {
|
||||
namespace rtengine
|
||||
{
|
||||
|
||||
extern const Settings* settings;
|
||||
|
||||
SHMap::SHMap (int w, int h, bool multiThread) : W(w), H(h), multiThread(multiThread) {
|
||||
SHMap::SHMap (int w, int h, bool multiThread) : W(w), H(h), multiThread(multiThread)
|
||||
{
|
||||
|
||||
map = new float*[H];
|
||||
for (int i=0; i<H; i++)
|
||||
|
||||
for (int i = 0; i < H; i++) {
|
||||
map[i] = new float[W];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
SHMap::~SHMap () {
|
||||
SHMap::~SHMap ()
|
||||
{
|
||||
|
||||
for (int i=0; i<H; i++)
|
||||
for (int i = 0; i < H; i++) {
|
||||
delete [] map[i];
|
||||
}
|
||||
|
||||
delete [] map;
|
||||
}
|
||||
|
||||
@@ -47,148 +54,167 @@ void SHMap::fillLuminance( Imagefloat * img, float **luminance, double lumi[3] )
|
||||
{
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (int i=0; i<H; i++)
|
||||
for (int j=0; j<W; j++) {
|
||||
luminance[i][j] = lumi[0]*std::max(img->r(i,j),0.f) + lumi[1]*std::max(img->g(i,j),0.f) + lumi[2]*std::max(img->b(i,j),0.f);
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < H; i++)
|
||||
for (int j = 0; j < W; j++) {
|
||||
luminance[i][j] = lumi[0] * std::max(img->r(i, j), 0.f) + lumi[1] * std::max(img->g(i, j), 0.f) + lumi[2] * std::max(img->b(i, j), 0.f);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void SHMap::update (Imagefloat* img, double radius, double lumi[3], bool hq, int skip) {
|
||||
void SHMap::update (Imagefloat* img, double radius, double lumi[3], bool hq, int skip)
|
||||
{
|
||||
|
||||
if (!hq) {
|
||||
fillLuminance( img, map, lumi);
|
||||
fillLuminance( img, map, lumi);
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
AlignedBufferMP<double>* pBuffer = new AlignedBufferMP<double> (max(W,H));
|
||||
gaussHorizontal<float> (map, map, *pBuffer, W, H, radius);
|
||||
gaussVertical<float> (map, map, *pBuffer, W, H, radius);
|
||||
delete pBuffer;
|
||||
}
|
||||
{
|
||||
AlignedBufferMP<double>* pBuffer = new AlignedBufferMP<double> (max(W, H));
|
||||
gaussHorizontal<float> (map, map, *pBuffer, W, H, radius);
|
||||
gaussVertical<float> (map, map, *pBuffer, W, H, radius);
|
||||
delete pBuffer;
|
||||
}
|
||||
}
|
||||
|
||||
else {
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
//experimental dirpyr shmap
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
//experimental dirpyr shmap
|
||||
|
||||
float thresh = (100.f*radius);//1000;
|
||||
float thresh = (100.f * radius); //1000;
|
||||
|
||||
// set up range function
|
||||
// calculate size of Lookup table. That's possible because from a value k for all i>=k rangefn[i] will be exp(-10)
|
||||
// So we use this fact and the automatic clip of lut to reduce the size of lut and the number of calculations to fill the lut
|
||||
// In past this lut had only integer precision with rangefn[i] = 0 for all i>=k
|
||||
// We set the last element to a small epsilon 1e-15 instead of zero to avoid divisions by zero
|
||||
const int lutSize = thresh * sqrtf(10.f) + 1;
|
||||
thresh *= thresh;
|
||||
LUTf rangefn(lutSize);
|
||||
for (int i=0; i<lutSize-1; i++) {
|
||||
rangefn[i] = xexpf(-min(10.f,(static_cast<float>(i)*i) / thresh ));//*intfactor;
|
||||
}
|
||||
rangefn[lutSize-1] = 1e-15f;
|
||||
|
||||
// We need one temporary buffer
|
||||
float ** buffer = allocArray<float> (W, H);
|
||||
|
||||
// the final result has to be in map
|
||||
// for an even number of levels that means: map => buffer, buffer => map
|
||||
// for an odd number of levels that means: buffer => map, map => buffer, buffer => map
|
||||
// so let's calculate the number of levels first
|
||||
// There are at least two levels
|
||||
int numLevels=2;
|
||||
int scale=2;
|
||||
while (skip*scale<16) {
|
||||
scale *= 2;
|
||||
numLevels++;
|
||||
}
|
||||
// set up range function
|
||||
// calculate size of Lookup table. That's possible because from a value k for all i>=k rangefn[i] will be exp(-10)
|
||||
// So we use this fact and the automatic clip of lut to reduce the size of lut and the number of calculations to fill the lut
|
||||
// In past this lut had only integer precision with rangefn[i] = 0 for all i>=k
|
||||
// We set the last element to a small epsilon 1e-15 instead of zero to avoid divisions by zero
|
||||
const int lutSize = thresh * sqrtf(10.f) + 1;
|
||||
thresh *= thresh;
|
||||
LUTf rangefn(lutSize);
|
||||
|
||||
float ** dirpyrlo[2];
|
||||
if(numLevels&1) { // odd number of levels, start with buffer
|
||||
dirpyrlo[0] = buffer;
|
||||
dirpyrlo[1] = map;
|
||||
} else { // even number of levels, start with map
|
||||
dirpyrlo[0] = map;
|
||||
dirpyrlo[1] = buffer;
|
||||
}
|
||||
for (int i = 0; i < lutSize - 1; i++) {
|
||||
rangefn[i] = xexpf(-min(10.f, (static_cast<float>(i) * i) / thresh )); //*intfactor;
|
||||
}
|
||||
|
||||
fillLuminance( img, dirpyrlo[0], lumi);
|
||||
rangefn[lutSize - 1] = 1e-15f;
|
||||
|
||||
scale = 1;
|
||||
int level=0;
|
||||
int indx=0;
|
||||
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1-indx], W, H, rangefn, level, scale );
|
||||
scale *= 2;
|
||||
level ++;
|
||||
indx = 1-indx;
|
||||
while (skip*scale<16) {
|
||||
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1-indx], W, H, rangefn, level, scale );
|
||||
scale *= 2;
|
||||
level ++;
|
||||
indx = 1-indx;
|
||||
}
|
||||
// We need one temporary buffer
|
||||
float ** buffer = allocArray<float> (W, H);
|
||||
|
||||
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1-indx], W, H, rangefn, level, scale );
|
||||
// the final result has to be in map
|
||||
// for an even number of levels that means: map => buffer, buffer => map
|
||||
// for an odd number of levels that means: buffer => map, map => buffer, buffer => map
|
||||
// so let's calculate the number of levels first
|
||||
// There are at least two levels
|
||||
int numLevels = 2;
|
||||
int scale = 2;
|
||||
|
||||
freeArray<float>(buffer, H);
|
||||
while (skip * scale < 16) {
|
||||
scale *= 2;
|
||||
numLevels++;
|
||||
}
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
/*
|
||||
// anti-alias filtering the result
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (int i=0; i<H; i++)
|
||||
for (int j=0; j<W; j++)
|
||||
if (i>0 && j>0 && i<H-1 && j<W-1)
|
||||
map[i][j] = (buffer[i-1][j-1]+buffer[i-1][j]+buffer[i-1][j+1]+buffer[i][j-1]+buffer[i][j]+buffer[i][j+1]+buffer[i+1][j-1]+buffer[i+1][j]+buffer[i+1][j+1])/9;
|
||||
else
|
||||
map[i][j] = buffer[i][j];
|
||||
*/
|
||||
float ** dirpyrlo[2];
|
||||
|
||||
if(numLevels & 1) { // odd number of levels, start with buffer
|
||||
dirpyrlo[0] = buffer;
|
||||
dirpyrlo[1] = map;
|
||||
} else { // even number of levels, start with map
|
||||
dirpyrlo[0] = map;
|
||||
dirpyrlo[1] = buffer;
|
||||
}
|
||||
|
||||
fillLuminance( img, dirpyrlo[0], lumi);
|
||||
|
||||
scale = 1;
|
||||
int level = 0;
|
||||
int indx = 0;
|
||||
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
|
||||
scale *= 2;
|
||||
level ++;
|
||||
indx = 1 - indx;
|
||||
|
||||
while (skip * scale < 16) {
|
||||
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
|
||||
scale *= 2;
|
||||
level ++;
|
||||
indx = 1 - indx;
|
||||
}
|
||||
|
||||
dirpyr_shmap(dirpyrlo[indx], dirpyrlo[1 - indx], W, H, rangefn, level, scale );
|
||||
|
||||
freeArray<float>(buffer, H);
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
/*
|
||||
// anti-alias filtering the result
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#endif
|
||||
for (int i=0; i<H; i++)
|
||||
for (int j=0; j<W; j++)
|
||||
if (i>0 && j>0 && i<H-1 && j<W-1)
|
||||
map[i][j] = (buffer[i-1][j-1]+buffer[i-1][j]+buffer[i-1][j+1]+buffer[i][j-1]+buffer[i][j]+buffer[i][j+1]+buffer[i+1][j-1]+buffer[i+1][j]+buffer[i+1][j+1])/9;
|
||||
else
|
||||
map[i][j] = buffer[i][j];
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
// update average, minimum, maximum
|
||||
double _avg = 0.0f; // use double precision to gain precision especially at systems with few cores and big pictures (error for 36 MPixel on single core was about 8% with float)
|
||||
double _avg = 0.0f; // use double precision to gain precision especially at systems with few cores and big pictures (error for 36 MPixel on single core was about 8% with float)
|
||||
min_f = 65535;
|
||||
max_f = 0;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
float _min_f = 65535.0f;
|
||||
float _max_f = 0.0f;
|
||||
float _val;
|
||||
{
|
||||
float _min_f = 65535.0f;
|
||||
float _max_f = 0.0f;
|
||||
float _val;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for reduction(+:_avg) schedule(dynamic,16) nowait
|
||||
#pragma omp for reduction(+:_avg) schedule(dynamic,16) nowait
|
||||
#endif
|
||||
for (int i=0; i<H; i++)
|
||||
for (int j=0; j<W; j++) {
|
||||
_val = map[i][j];
|
||||
if (_val < _min_f)
|
||||
_min_f = _val;
|
||||
if (_val > _max_f)
|
||||
_max_f = _val;
|
||||
_avg += _val;
|
||||
|
||||
for (int i = 0; i < H; i++)
|
||||
for (int j = 0; j < W; j++) {
|
||||
_val = map[i][j];
|
||||
|
||||
if (_val < _min_f) {
|
||||
_min_f = _val;
|
||||
}
|
||||
|
||||
if (_val > _max_f) {
|
||||
_max_f = _val;
|
||||
}
|
||||
|
||||
_avg += _val;
|
||||
}
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp critical
|
||||
#endif
|
||||
{
|
||||
if(_min_f < min_f ) {
|
||||
min_f = _min_f;
|
||||
}
|
||||
|
||||
if(_max_f > max_f ) {
|
||||
max_f = _max_f;
|
||||
}
|
||||
}
|
||||
#ifdef _OPENMP
|
||||
#pragma omp critical
|
||||
#endif
|
||||
{
|
||||
if(_min_f < min_f )
|
||||
min_f = _min_f;
|
||||
if(_max_f > max_f )
|
||||
max_f = _max_f;
|
||||
}
|
||||
}
|
||||
_avg /= ((H)*(W));
|
||||
}
|
||||
_avg /= ((H) * (W));
|
||||
avg = _avg;
|
||||
|
||||
}
|
||||
|
||||
void SHMap::forceStat (float max_, float min_, float avg_) {
|
||||
void SHMap::forceStat (float max_, float min_, float avg_)
|
||||
{
|
||||
|
||||
max_f = max_;
|
||||
min_f = min_;
|
||||
@@ -197,192 +223,228 @@ void SHMap::forceStat (float max_, float min_, float avg_) {
|
||||
|
||||
SSEFUNCTION void SHMap::dirpyr_shmap(float ** data_fine, float ** data_coarse, int width, int height, LUTf & rangefn, int level, int scale)
|
||||
{
|
||||
//scale is spacing of directional averaging weights
|
||||
//scale is spacing of directional averaging weights
|
||||
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
// calculate weights, compute directionally weighted average
|
||||
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
// calculate weights, compute directionally weighted average
|
||||
|
||||
int scalewin, halfwin;
|
||||
int scalewin, halfwin;
|
||||
|
||||
if(level < 2) {
|
||||
halfwin = 1;
|
||||
scalewin = halfwin*scale;
|
||||
if(level < 2) {
|
||||
halfwin = 1;
|
||||
scalewin = halfwin * scale;
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
{
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
||||
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
||||
#endif // __SSE2__
|
||||
int j;
|
||||
int j;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for
|
||||
#pragma omp for
|
||||
#endif
|
||||
for(int i = 0; i < height; i++) {
|
||||
float dirwt;
|
||||
for(j = 0; j < scalewin; j++) {
|
||||
float val=0.f;
|
||||
float norm=0.f;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j%scale; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
|
||||
for(int i = 0; i < height; i++) {
|
||||
float dirwt;
|
||||
|
||||
for(j = 0; j < scalewin; j++) {
|
||||
float val = 0.f;
|
||||
float norm = 0.f;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j % scale; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
int inbrMin = max(i-scalewin,i%scale);
|
||||
for(; j < (width-scalewin)-3; j+=4) {
|
||||
valv= _mm_setzero_ps();
|
||||
normv= _mm_setzero_ps();
|
||||
dftemp1v = LVFU(data_fine[i][j]);
|
||||
for(int inbr=inbrMin; inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
||||
dirwtv = ( rangefn[_mm_cvttps_epi32(vabsf(dftemp2v-dftemp1v))] );
|
||||
valv += dirwtv*dftemp2v;
|
||||
normv += dirwtv;
|
||||
}
|
||||
}
|
||||
_mm_storeu_ps( &data_coarse[i][j], valv/normv);
|
||||
}
|
||||
for(; j < width-scalewin; j++) {
|
||||
float val=0.f;
|
||||
float norm=0.f;
|
||||
for(int inbr=inbrMin; inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
int inbrMin = max(i - scalewin, i % scale);
|
||||
|
||||
for(; j < (width - scalewin) - 3; j += 4) {
|
||||
valv = _mm_setzero_ps();
|
||||
normv = _mm_setzero_ps();
|
||||
dftemp1v = LVFU(data_fine[i][j]);
|
||||
|
||||
for(int inbr = inbrMin; inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
||||
dirwtv = ( rangefn[_mm_cvttps_epi32(vabsf(dftemp2v - dftemp1v))] );
|
||||
valv += dirwtv * dftemp2v;
|
||||
normv += dirwtv;
|
||||
}
|
||||
}
|
||||
|
||||
_mm_storeu_ps( &data_coarse[i][j], valv / normv);
|
||||
}
|
||||
|
||||
for(; j < width - scalewin; j++) {
|
||||
float val = 0.f;
|
||||
float norm = 0.f;
|
||||
|
||||
for(int inbr = inbrMin; inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
|
||||
#else
|
||||
for(; j < width-scalewin; j++) {
|
||||
float val=0.f;
|
||||
float norm=0.f;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
|
||||
for(; j < width - scalewin; j++) {
|
||||
float val = 0.f;
|
||||
float norm = 0.f;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
|
||||
#endif
|
||||
for(; j < width; j++) {
|
||||
float val=0.f;
|
||||
float norm=0.f;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<width; jnbr+=scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
halfwin=2;
|
||||
scalewin = halfwin*scale;
|
||||
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
|
||||
//generate domain kernel
|
||||
|
||||
for(; j < width; j++) {
|
||||
float val = 0.f;
|
||||
float norm = 0.f;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr < width; jnbr += scale) {
|
||||
dirwt = ( rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
halfwin = 2;
|
||||
scalewin = halfwin * scale;
|
||||
int domker[5][5] = {{1, 1, 1, 1, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 1, 1, 1, 1}};
|
||||
//generate domain kernel
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
{
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
||||
float domkerv[5][5][4] __attribute__ ((aligned (16))) = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}};
|
||||
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
||||
float domkerv[5][5][4] __attribute__ ((aligned (16))) = {{{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {1, 1, 1, 1}}, {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}};
|
||||
|
||||
#endif // __SSE2__
|
||||
int j;
|
||||
int j;
|
||||
#ifdef _OPENMP
|
||||
#pragma omp for schedule(dynamic,16)
|
||||
#pragma omp for schedule(dynamic,16)
|
||||
#endif
|
||||
for(int i = 0; i < height; i++) {
|
||||
float dirwt;
|
||||
for(j = 0; j < scalewin; j++) {
|
||||
float val=0.f;
|
||||
float norm=0.f;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j%scale; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
|
||||
for(int i = 0; i < height; i++) {
|
||||
float dirwt;
|
||||
|
||||
for(j = 0; j < scalewin; j++) {
|
||||
float val = 0.f;
|
||||
float norm = 0.f;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j % scale; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
for(; j < width-scalewin-3; j+=4) {
|
||||
valv = _mm_setzero_ps();
|
||||
normv = _mm_setzero_ps();
|
||||
dftemp1v = LVFU(data_fine[i][j]);
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=MIN(i+scalewin, height-1); inbr+=scale) {
|
||||
int indexihlp = (inbr-i)/scale+halfwin;
|
||||
for (int jnbr=j-scalewin,indexjhlp = 0; jnbr<=j+scalewin; jnbr+=scale,indexjhlp++) {
|
||||
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
||||
dirwtv = ( _mm_load_ps((float*)&domkerv[indexihlp][indexjhlp]) * rangefn[_mm_cvttps_epi32(vabsf(dftemp2v-dftemp1v))] );
|
||||
valv += dirwtv*dftemp2v;
|
||||
normv += dirwtv;
|
||||
}
|
||||
}
|
||||
_mm_storeu_ps( &data_coarse[i][j], valv/normv);
|
||||
}
|
||||
for(; j < width-scalewin; j++) {
|
||||
float val=0;
|
||||
float norm=0;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
|
||||
for(; j < width - scalewin - 3; j += 4) {
|
||||
valv = _mm_setzero_ps();
|
||||
normv = _mm_setzero_ps();
|
||||
dftemp1v = LVFU(data_fine[i][j]);
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= MIN(i + scalewin, height - 1); inbr += scale) {
|
||||
int indexihlp = (inbr - i) / scale + halfwin;
|
||||
|
||||
for (int jnbr = j - scalewin, indexjhlp = 0; jnbr <= j + scalewin; jnbr += scale, indexjhlp++) {
|
||||
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
||||
dirwtv = ( _mm_load_ps((float*)&domkerv[indexihlp][indexjhlp]) * rangefn[_mm_cvttps_epi32(vabsf(dftemp2v - dftemp1v))] );
|
||||
valv += dirwtv * dftemp2v;
|
||||
normv += dirwtv;
|
||||
}
|
||||
}
|
||||
|
||||
_mm_storeu_ps( &data_coarse[i][j], valv / normv);
|
||||
}
|
||||
|
||||
for(; j < width - scalewin; j++) {
|
||||
float val = 0;
|
||||
float norm = 0;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
|
||||
#else
|
||||
for(; j < width-scalewin; j++) {
|
||||
float val=0;
|
||||
float norm=0;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
||||
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
#endif
|
||||
for(; j < width; j++) {
|
||||
float val=0;
|
||||
float norm=0;
|
||||
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
|
||||
for (int jnbr=j-scalewin; jnbr<width; jnbr+=scale) {
|
||||
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
|
||||
val += dirwt*data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
data_coarse[i][j] = val/norm; // low pass filter
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
for(; j < width - scalewin; j++) {
|
||||
float val = 0;
|
||||
float norm = 0;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
||||
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
for(; j < width; j++) {
|
||||
float val = 0;
|
||||
float norm = 0;
|
||||
|
||||
for(int inbr = max(i - scalewin, i % scale); inbr <= min(i + scalewin, height - 1); inbr += scale) {
|
||||
for (int jnbr = j - scalewin; jnbr < width; jnbr += scale) {
|
||||
dirwt = ( domker[(inbr - i) / scale + halfwin][(jnbr - j) / scale + halfwin] * rangefn[abs(data_fine[inbr][jnbr] - data_fine[i][j])] );
|
||||
val += dirwt * data_fine[inbr][jnbr];
|
||||
norm += dirwt;
|
||||
}
|
||||
}
|
||||
|
||||
data_coarse[i][j] = val / norm; // low pass filter
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user