pixelshift: use auto-calculated ca-correction parameters from first frame for all frames

This commit is contained in:
heckflosse 2018-05-19 12:24:29 +02:00
parent b065eb7613
commit 2828e2933d
3 changed files with 66 additions and 18 deletions

View File

@ -27,7 +27,7 @@
#include "rawimagesource.h"
#include "rt_math.h"
#include "median.h"
#include "StopWatch.h"
namespace {
bool LinEqSolve(int nDim, double* pfMatr, double* pfVect, double* pfSolution)
@ -111,7 +111,7 @@ bool LinEqSolve(int nDim, double* pfMatr, double* pfVect, double* pfSolution)
using namespace std;
using namespace rtengine;
void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const double cablue, const double caautostrength, array2D<float> &rawData)
void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const double cablue, const double caautostrength, array2D<float> &rawData, double *fitParamsTransfer, bool fitParamsIn, bool fitParamsOut, float *buffer, bool freeBuffer)
{
// multithreaded and vectorized by Ingo Weyrich
constexpr int ts = 128;
@ -135,11 +135,13 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
// local variables
const int width = W + (W & 1), height = H;
//temporary array to store simple interpolation of G
float *Gtmp = (float (*)) malloc ((height * width) / 2 * sizeof * Gtmp);
// temporary array to avoid race conflicts, only every second pixel needs to be saved here
float *RawDataTmp = (float*) malloc( (height * width) * sizeof(float) / 2);
//temporary array to store simple interpolation of G
if (!buffer) {
buffer = (float (*)) malloc ((height * width) / 2 * sizeof (float) + (height * width) * sizeof(float) / 2);
}
float *Gtmp = buffer;
float *RawDataTmp = buffer + (height * width) / 2;
float blockave[2][2] = {{0, 0}, {0, 0}}, blocksqave[2][2] = {{0, 0}, {0, 0}}, blockdenom[2][2] = {{0, 0}, {0, 0}}, blockvar[2][2];
@ -159,7 +161,17 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
float (*blockshifts)[2][2] = (float (*)[2][2])(blockwt + vblsz * hblsz);
double fitparams[2][2][16];
const bool fitParamsSet = fitParamsTransfer && fitParamsIn;
if(autoCA && fitParamsSet) {
int index = 0;
for(int c = 0; c < 2; ++c) {
for(int d = 0; d < 2; ++d) {
for(int e = 0; e < 16; ++e) {
fitparams[c][d][e] = fitParamsTransfer[index++];
}
}
}
}
//order of 2d polynomial fit (polyord), and numpar=polyord^2
int polyord = 4, numpar = 16;
@ -186,8 +198,8 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
// assign working space
constexpr int buffersize = sizeof(float) * ts * ts + 8 * sizeof(float) * ts * tsh + 8 * 64 + 63;
char *buffer = (char *) malloc(buffersize);
char *data = (char*)( ( uintptr_t(buffer) + uintptr_t(63)) / 64 * 64);
char *bufferThr = (char *) malloc(buffersize);
char *data = (char*)( ( uintptr_t(bufferThr) + uintptr_t(63)) / 64 * 64);
// shift the beginning of all arrays but the first by 64 bytes to avoid cache miss conflicts on CPUs which have <=4-way associative L1-Cache
@ -214,12 +226,12 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
float *gshift = rbhpfv; // there is no overlap in buffer usage => share
if (autoCA) {
if (autoCA && !fitParamsSet) {
// Main algorithm: Tile loop calculating correction parameters per tile
#pragma omp for collapse(2) schedule(dynamic) nowait
for (int top = -border ; top < height; top += ts - border2)
for (int left = -border; left < width - (W & 1); left += ts - border2) {
memset(buffer, 0, buffersize);
memset(bufferThr, 0, buffersize);
const int vblock = ((top + border) / (ts - border2)) + 1;
const int hblock = ((left + border) / (ts - border2)) + 1;
const int bottom = min(top + ts, height + border);
@ -741,7 +753,6 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
processpasstwo = false;
}
}
}
//fitparams[polyord*i+j] gives the coefficients of (vblock^i hblock^j) in a polynomial fit for i,j<=4
@ -756,7 +767,7 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
for (int top = -border; top < height; top += ts - border2)
for (int left = -border; left < width - (W & 1); left += ts - border2) {
memset(buffer, 0, buffersize);
memset(bufferThr, 0, buffersize);
float lblockshifts[2][2];
const int vblock = ((top + border) / (ts - border2)) + 1;
const int hblock = ((left + border) / (ts - border2)) + 1;
@ -929,6 +940,25 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
lblockshifts[1][1] = 2 * hfrac * cablue;
} else {
//CA auto correction; use CA diagnostic pass to set shift parameters
if (fitParamsIn) {
for (int rr = 3; rr < rr1 - 3; rr++) {
for (int cc = 3, indx = rr * ts + cc; cc < cc1 - 3; cc++, indx++) {
int c = FC(rr, cc);
if (c != 1) {
//compute directional weights using image gradients
float wtu = 1.f / SQR(eps + fabsf(rgb[1][(rr + 1) * ts + cc] - rgb[1][(rr - 1) * ts + cc]) + fabsf(rgb[c][(rr * ts + cc) >> 1] - rgb[c][((rr - 2) * ts + cc) >> 1]) + fabsf(rgb[1][(rr - 1) * ts + cc] - rgb[1][(rr - 3) * ts + cc]));
float wtd = 1.f / SQR(eps + fabsf(rgb[1][(rr - 1) * ts + cc] - rgb[1][(rr + 1) * ts + cc]) + fabsf(rgb[c][(rr * ts + cc) >> 1] - rgb[c][((rr + 2) * ts + cc) >> 1]) + fabsf(rgb[1][(rr + 1) * ts + cc] - rgb[1][(rr + 3) * ts + cc]));
float wtl = 1.f / SQR(eps + fabsf(rgb[1][rr * ts + cc + 1] - rgb[1][rr * ts + cc - 1]) + fabsf(rgb[c][(rr * ts + cc) >> 1] - rgb[c][(rr * ts + cc - 2) >> 1]) + fabsf(rgb[1][rr * ts + cc - 1] - rgb[1][rr * ts + cc - 3]));
float wtr = 1.f / SQR(eps + fabsf(rgb[1][rr * ts + cc - 1] - rgb[1][rr * ts + cc + 1]) + fabsf(rgb[c][(rr * ts + cc) >> 1] - rgb[c][(rr * ts + cc + 2) >> 1]) + fabsf(rgb[1][rr * ts + cc + 1] - rgb[1][rr * ts + cc + 3]));
//store in rgb array the interpolated G value at R/B grid points using directional weighted average
rgb[1][indx] = (wtu * rgb[1][indx - v1] + wtd * rgb[1][indx + v1] + wtl * rgb[1][indx - 1] + wtr * rgb[1][indx + 1]) / (wtu + wtd + wtl + wtr);
}
}
}
}
lblockshifts[0][0] = lblockshifts[0][1] = 0;
lblockshifts[1][0] = lblockshifts[1][1] = 0;
double powVblock = 1.0;
@ -1153,12 +1183,25 @@ void RawImageSource::CA_correct_RT(const bool autoCA, const double cared, const
}
// clean up
free(bufferThr);
}
if(autoCA && fitParamsTransfer && fitParamsOut) {
int index = 0;
for(int c = 0; c < 2; ++c) {
for(int d = 0; d < 2; ++d) {
for(int e = 0; e < 16; ++e) {
fitParamsTransfer[index++] = fitparams[c][d][e];
}
}
}
}
if(freeBuffer) {
free(buffer);
}
free(Gtmp);
free(blockwt);
free(RawDataTmp);
if(plistener) {
plistener->setProgress(1.0);

View File

@ -2015,9 +2015,14 @@ void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &le
plistener->setProgress (0.0);
}
if(numFrames == 4) {
for(int i=0; i<4; ++i) {
CA_correct_RT(raw.ca_autocorrect, raw.cared, raw.cablue, 8.0, *rawDataFrames[i]);
StopWatch Stop1("ps ca correction");
double fitParams[64];
float *buffer = nullptr;
CA_correct_RT(raw.ca_autocorrect, raw.cared, raw.cablue, 8.0, *rawDataFrames[0], fitParams, false, false, buffer, false);
for(int i = 1; i < 3; ++i) {
CA_correct_RT(raw.ca_autocorrect, raw.cared, raw.cablue, 8.0, *rawDataFrames[i], fitParams, false, false, buffer, false);
}
CA_correct_RT(raw.ca_autocorrect, raw.cared, raw.cablue, 8.0, *rawDataFrames[3], fitParams, false, false, buffer);
} else {
CA_correct_RT(raw.ca_autocorrect, raw.cared, raw.cablue, 8.0, rawData);
}

View File

@ -245,7 +245,7 @@ protected:
inline void interpolate_row_rb (float* ar, float* ab, float* pg, float* cg, float* ng, int i);
inline void interpolate_row_rb_mul_pp (float* ar, float* ab, float* pg, float* cg, float* ng, int i, float r_mul, float g_mul, float b_mul, int x1, int width, int skip);
void CA_correct_RT (const bool autoCA, const double cared, const double cablue, const double caautostrength, array2D<float> &rawData);
void CA_correct_RT (const bool autoCA, const double cared, const double cablue, const double caautostrength, array2D<float> &rawData, double *fitParamsTransfer = nullptr, bool fitParamsIn = false, bool fitParamsOut = false, float *buffer = nullptr, bool freeBuffer = true);
void ddct8x8s(int isgn, float a[8][8]);
void processRawWhitepoint (float expos, float preser, array2D<float> &rawData); // exposure before interpolation