Fixed crash when Rt-spot is too small for Denoise and Dehaze

This commit is contained in:
Desmis
2019-09-30 17:42:32 +02:00
parent 3ba153ae62
commit 2ed52360f5
2 changed files with 680 additions and 672 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -854,203 +854,203 @@ void RawImageSource::MSR(float** luminance, float** originalLuminance, float **e
void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_L, int H_L, int skip, const LocCCmaskCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili, int llretiMask, bool retiMasktmap, bool retiMask, void maskforretinex(int sp, int before, float ** luminance, float ** out, int W_L, int H_L, int skip, const LocCCmaskCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskCurve & lochhmasretiCurve, bool & lhmasretiutili, int llretiMask, bool retiMasktmap, bool retiMask,
const LocallabParams &loc, LabImage * bufreti, LabImage * bufmask, LabImage * buforig, LabImage * buforigmas, bool multiThread) const LocallabParams &loc, LabImage * bufreti, LabImage * bufmask, LabImage * buforig, LabImage * buforigmas, bool multiThread)
{ {
array2D<float> loctemp(W_L, H_L); array2D<float> loctemp(W_L, H_L);
array2D<float> ble(W_L, H_L); array2D<float> ble(W_L, H_L);
array2D<float> guid(W_L, H_L); array2D<float> guid(W_L, H_L);
std::unique_ptr<LabImage> bufmaskblurreti; std::unique_ptr<LabImage> bufmaskblurreti;
bufmaskblurreti.reset(new LabImage(W_L, H_L)); bufmaskblurreti.reset(new LabImage(W_L, H_L));
std::unique_ptr<LabImage> bufmaskorigreti; std::unique_ptr<LabImage> bufmaskorigreti;
bufmaskorigreti.reset(new LabImage(W_L, H_L)); bufmaskorigreti.reset(new LabImage(W_L, H_L));
printf("mask 1\n"); printf("mask 1\n");
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
if (before == 1 && retiMasktmap) {
loctemp[y][x] = LIM(luminance[y][x], 0.f, 32768.f);
} else if (before == 0 && retiMasktmap) {
loctemp[y][x] = out[y][x];
} else {
loctemp[y][x] = bufreti->L[y][x];
}
}
}
printf("mask 2\n");
float fab = 4000.f;//value must be good in most cases
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < H_L; ir++) {
for (int jr = 0; jr < W_L; jr++) {
float kmaskLexp = 0;
float kmaskCH = 0;
if (locllmasretiCurve && llmasretiutili) {
float ligh = loctemp[ir][jr] / 32768.f;
kmaskLexp = 32768.f * LIM01(1.f - locllmasretiCurve[500.f * ligh]);
}
if (locllmasretiCurve && llmasretiutili && retiMasktmap) {
}
if (llretiMask != 4) {
if (locccmasretiCurve && lcmasretiutili) {
float chromask = 0.0001f + sqrt(SQR((bufreti->a[ir][jr]) / fab) + SQR((bufreti->b[ir][jr]) / fab));
kmaskCH = LIM01(1.f - locccmasretiCurve[500.f * chromask]);
}
}
if (lochhmasretiCurve && lhmasretiutili) {
float huema = xatan2f(bufreti->b[ir][jr], bufreti->a[ir][jr]);
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
float valHH = LIM01(1.f - lochhmasretiCurve[500.f * h]);
if (llretiMask != 4) {
kmaskCH += valHH;
}
kmaskLexp += 32768.f * valHH;
}
bufmaskblurreti->L[ir][jr] = kmaskLexp;
bufmaskblurreti->a[ir][jr] = kmaskCH;
bufmaskblurreti->b[ir][jr] = kmaskCH;
ble[ir][jr] = bufmaskblurreti->L[ir][jr] / 32768.f;
guid[ir][jr] = bufreti->L[ir][jr] / 32768.f;
}
}
printf("mask 3\n");
if (loc.spots.at(sp).radmaskreti > 0.f) {
guidedFilter(guid, ble, ble, loc.spots.at(sp).radmaskreti * 10.f / skip, 0.001, multiThread, 4);
}
LUTf lutTonemaskreti(65536);
calcGammaLut(loc.spots.at(sp).gammaskreti, loc.spots.at(sp).slomaskreti, lutTonemaskreti);
float radiusb = 1.f / skip;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < H_L; ir++)
for (int jr = 0; jr < W_L; jr++) {
float L_;
bufmaskblurreti->L[ir][jr] = LIM01(ble[ir][jr]) * 32768.f;
L_ = 2.f * bufmaskblurreti->L[ir][jr];
bufmaskblurreti->L[ir][jr] = lutTonemaskreti[L_];
}
printf("mask 4\n");
//blend
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurreti->L, bufmaskorigreti->L, W_L, H_L, radiusb);
gaussianBlur(bufmaskblurreti->a, bufmaskorigreti->a, W_L, H_L, 1.f + (0.5f * loc.spots.at(sp).radmaskreti) / skip);
gaussianBlur(bufmaskblurreti->b, bufmaskorigreti->b, W_L, H_L, 1.f + (0.5f * loc.spots.at(sp).radmaskreti) / skip);
}
float modr = 0.01f * (float) loc.spots.at(sp).blendmaskreti;
if (llretiMask != 3 && retiMask) {
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16) #pragma omp parallel for schedule(dynamic,16)
#endif #endif
for (int y = 0; y < H_L; y++) { for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) { for (int x = 0; x < W_L; x++) {
if (before == 1 && retiMasktmap) { if (before == 0 && retiMasktmap) {
loctemp[y][x] = LIM(luminance[y][x], 0.f, 32768.f); out[y][x] += fabs(modr) * bufmaskorigreti->L[y][x];
} else if(before == 0 && retiMasktmap ){ out[y][x] = LIM(out[y][x], 0.f, 100000.f);
loctemp[y][x] = out[y][x];
} else { } else {
loctemp[y][x] = bufreti->L[y][x]; bufreti->L[y][x] += bufmaskorigreti->L[y][x] * modr;
bufreti->L[y][x] = CLIPLOC(bufreti->L[y][x]);
} }
bufreti->a[y][x] *= (1.f + bufmaskorigreti->a[y][x] * modr * (1.f + 0.01f * loc.spots.at(sp).chromaskreti));
bufreti->b[y][x] *= (1.f + bufmaskorigreti->b[y][x] * modr * (1.f + 0.01f * loc.spots.at(sp).chromaskreti));
bufreti->a[y][x] = CLIPC(bufreti->a[y][x]);
bufreti->b[y][x] = CLIPC(bufreti->b[y][x]);
} }
} }
printf("mask 2\n"); printf("mask 5\n");
float fab = 4000.f;//value must be good in most cases }
if (!retiMasktmap && retiMask) { //new original blur mask for deltaE
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16) #pragma omp parallel for schedule(dynamic,16)
#endif #endif
for (int ir = 0; ir < H_L; ir++) { for (int y = 0; y < H_L; y++) {
for (int jr = 0; jr < W_L; jr++) { for (int x = 0; x < W_L; x++) {
float kmaskLexp = 0;
float kmaskCH = 0;
if (locllmasretiCurve && llmasretiutili) { buforig->L[y][x] += (modr * bufmaskorigreti->L[y][x]);
float ligh = loctemp[ir][jr] / 32768.f; buforig->a[y][x] *= (1.f + modr * bufmaskorigreti->a[y][x]);
kmaskLexp = 32768.f * LIM01(1.f - locllmasretiCurve[500.f * ligh]); buforig->b[y][x] *= (1.f + modr * bufmaskorigreti->b[y][x]);
}
buforig->L[y][x] = CLIP(buforig->L[y][x]);
buforig->a[y][x] = CLIPC(buforig->a[y][x]);
buforig->b[y][x] = CLIPC(buforig->b[y][x]);
if (locllmasretiCurve && llmasretiutili && retiMasktmap) { buforig->L[y][x] = CLIP(buforig->L[y][x] - bufmaskorigreti->L[y][x]);
} buforig->a[y][x] = CLIPC(buforig->a[y][x] * (1.f - bufmaskorigreti->a[y][x]));
buforig->b[y][x] = CLIPC(buforig->b[y][x] * (1.f - bufmaskorigreti->b[y][x]));
if (llretiMask != 4) {
if (locccmasretiCurve && lcmasretiutili) {
float chromask = 0.0001f + sqrt(SQR((bufreti->a[ir][jr]) / fab) + SQR((bufreti->b[ir][jr]) / fab));
kmaskCH = LIM01(1.f - locccmasretiCurve[500.f * chromask]);
}
}
if (lochhmasretiCurve && lhmasretiutili) {
float huema = xatan2f(bufreti->b[ir][jr], bufreti->a[ir][jr]);
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
float valHH = LIM01(1.f - lochhmasretiCurve[500.f * h]);
if (llretiMask != 4) {
kmaskCH += valHH;
}
kmaskLexp += 32768.f * valHH;
}
bufmaskblurreti->L[ir][jr] = kmaskLexp;
bufmaskblurreti->a[ir][jr] = kmaskCH;
bufmaskblurreti->b[ir][jr] = kmaskCH;
ble[ir][jr] = bufmaskblurreti->L[ir][jr] / 32768.f;
guid[ir][jr] = bufreti->L[ir][jr] / 32768.f;
} }
} }
printf("mask 3\n"); float radius = 3.f / skip;
if (loc.spots.at(sp).radmaskreti > 0.f) {
guidedFilter(guid, ble, ble, loc.spots.at(sp).radmaskreti * 10.f / skip, 0.001, multiThread, 4);
}
LUTf lutTonemaskreti(65536);
calcGammaLut(loc.spots.at(sp).gammaskreti, loc.spots.at(sp).slomaskreti, lutTonemaskreti);
float radiusb = 1.f / skip;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16) #pragma omp parallel if (multiThread)
#endif
for (int ir = 0; ir < H_L; ir++)
for (int jr = 0; jr < W_L; jr++) {
float L_;
bufmaskblurreti->L[ir][jr] = LIM01(ble[ir][jr]) * 32768.f;
L_ = 2.f * bufmaskblurreti->L[ir][jr];
bufmaskblurreti->L[ir][jr] = lutTonemaskreti[L_];
}
printf("mask 4\n");
//blend
#ifdef _OPENMP
#pragma omp parallel
#endif #endif
{ {
gaussianBlur(bufmaskblurreti->L, bufmaskorigreti->L, W_L, H_L, radiusb); gaussianBlur(buforig->L, buforigmas->L, W_L, H_L, radius);
gaussianBlur(bufmaskblurreti->a, bufmaskorigreti->a, W_L, H_L, 1.f + (0.5f * loc.spots.at(sp).radmaskreti) / skip); gaussianBlur(buforig->a, buforigmas->a, W_L, H_L, radius);
gaussianBlur(bufmaskblurreti->b, bufmaskorigreti->b, W_L, H_L, 1.f + (0.5f * loc.spots.at(sp).radmaskreti) / skip); gaussianBlur(buforig->b, buforigmas->b, W_L, H_L, radius);
} }
printf("mask 6\n");
float modr = 0.01f * (float) loc.spots.at(sp).blendmaskreti; }
if (llretiMask != 3 && retiMask) { printf("mask 7\n");
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) { if (llretiMask == 3) {
for (int x = 0; x < W_L; x++) {
if (before == 0 && retiMasktmap) {
out[y][x] += fabs(modr) * bufmaskorigreti->L[y][x];
out[y][x] = LIM(out[y][x], 0.f, 100000.f);
} else {
bufreti->L[y][x] += bufmaskorigreti->L[y][x] * modr;
bufreti->L[y][x] = CLIPLOC(bufreti->L[y][x]);
}
bufreti->a[y][x] *= (1.f + bufmaskorigreti->a[y][x] * modr * (1.f + 0.01f * loc.spots.at(sp).chromaskreti));
bufreti->b[y][x] *= (1.f + bufmaskorigreti->b[y][x] * modr * (1.f + 0.01f * loc.spots.at(sp).chromaskreti));
bufreti->a[y][x] = CLIPC(bufreti->a[y][x]);
bufreti->b[y][x] = CLIPC(bufreti->b[y][x]);
}
}
printf("mask 5\n");
}
if (!retiMasktmap && retiMask) { //new original blur mask for deltaE
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) {
buforig->L[y][x] += (modr * bufmaskorigreti->L[y][x]);
buforig->a[y][x] *= (1.f + modr * bufmaskorigreti->a[y][x]);
buforig->b[y][x] *= (1.f + modr * bufmaskorigreti->b[y][x]);
buforig->L[y][x] = CLIP(buforig->L[y][x]);
buforig->a[y][x] = CLIPC(buforig->a[y][x]);
buforig->b[y][x] = CLIPC(buforig->b[y][x]);
buforig->L[y][x] = CLIP(buforig->L[y][x] - bufmaskorigreti->L[y][x]);
buforig->a[y][x] = CLIPC(buforig->a[y][x] * (1.f - bufmaskorigreti->a[y][x]));
buforig->b[y][x] = CLIPC(buforig->b[y][x] * (1.f - bufmaskorigreti->b[y][x]));
}
}
float radius = 3.f / skip;
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel if (multiThread) #pragma omp parallel for schedule(dynamic,16)
#endif
{
gaussianBlur(buforig->L, buforigmas->L, W_L, H_L, radius);
gaussianBlur(buforig->a, buforigmas->a, W_L, H_L, radius);
gaussianBlur(buforig->b, buforigmas->b, W_L, H_L, radius);
}
printf("mask 6\n");
}
printf("mask 7\n");
if (llretiMask == 3) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif #endif
for (int y = 0; y < H_L; y++) { for (int y = 0; y < H_L; y++) {
for (int x = 0; x < W_L; x++) { for (int x = 0; x < W_L; x++) {
bufmask->L[y][x] = 6000.f + CLIPLOC(bufmaskorigreti->L[y][x]); bufmask->L[y][x] = 6000.f + CLIPLOC(bufmaskorigreti->L[y][x]);
bufmask->a[y][x] = CLIPC(bufreti->a[y][x] * bufmaskorigreti->a[y][x]); bufmask->a[y][x] = CLIPC(bufreti->a[y][x] * bufmaskorigreti->a[y][x]);
bufmask->b[y][x] = CLIPC(bufreti->b[y][x] * bufmaskorigreti->b[y][x]); bufmask->b[y][x] = CLIPC(bufreti->b[y][x] * bufmaskorigreti->b[y][x]);
}
} }
} }
}
} }
@@ -1259,13 +1259,13 @@ void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, LabImage * bufreti, L
} }
} }
/* /*
if (lum == 1 && scale == 1 && (llretiMask == 3 || llretiMask == 0 || llretiMask == 2 || llretiMask == 4)) { //only mask with luminance on last scale if (lum == 1 && scale == 1 && (llretiMask == 3 || llretiMask == 0 || llretiMask == 2 || llretiMask == 4)) { //only mask with luminance on last scale
int before = 0; int before = 0;
maskforretinex(sp, before, luminance, out, W_L, H_L, skip, locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, retiMasktmap, retiMask, maskforretinex(sp, before, luminance, out, W_L, H_L, skip, locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, retiMasktmap, retiMask,
loc, bufreti, bufmask, buforig, buforigmas, multiThread); loc, bufreti, bufmask, buforig, buforigmas, multiThread);
} }
*/ */
#ifdef __SSE2__ #ifdef __SSE2__
vfloat pondv = F2V(pond); vfloat pondv = F2V(pond);