Retinex, fix wrong usage of omp

This commit is contained in:
heckflosse 2016-02-08 16:33:37 +01:00
parent 23ea31cd78
commit 42e025501d

View File

@ -45,6 +45,7 @@
#include "rawimagesource.h" #include "rawimagesource.h"
#include "improcfun.h" #include "improcfun.h"
#include "opthelper.h" #include "opthelper.h"
#define BENCHMARK
#include "StopWatch.h" #include "StopWatch.h"
#define MAX_RETINEX_SCALES 8 #define MAX_RETINEX_SCALES 8
@ -208,6 +209,8 @@ void mean_stddv( float **dst, float &mean, float &stddv, int W_L, int H_L, const
void RawImageSource::MSR(float** luminance, float** originalLuminance, float **exLuminance, LUTf & mapcurve, bool &mapcontlutili, int width, int height, RetinexParams deh, const RetinextransmissionCurve & dehatransmissionCurve, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax) void RawImageSource::MSR(float** luminance, float** originalLuminance, float **exLuminance, LUTf & mapcurve, bool &mapcontlutili, int width, int height, RetinexParams deh, const RetinextransmissionCurve & dehatransmissionCurve, float &minCD, float &maxCD, float &mini, float &maxi, float &Tmean, float &Tsigma, float &Tmin, float &Tmax)
{ {
BENCHFUN
if (deh.enabled) {//enabled if (deh.enabled) {//enabled
float mean, stddv, maxtr, mintr; float mean, stddv, maxtr, mintr;
//float mini, delta, maxi; //float mini, delta, maxi;
@ -482,126 +485,128 @@ void RawImageSource::MSR(float** luminance, float** originalLuminance, float **e
float *buffer = new float[W_L * H_L];; float *buffer = new float[W_L * H_L];;
for ( int scale = scal - 1; scale >= 0; scale-- ) {
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel #pragma omp parallel
#endif #endif
{ {
for ( int scale = scal - 1; scale >= 0; scale-- ) { if(scale == scal - 1)
if(scale == scal - 1) { {
gaussianBlur (src, out, W_L, H_L, RetinexScales[scale], buffer); gaussianBlur (src, out, W_L, H_L, RetinexScales[scale], buffer);
} else { // reuse result of last iteration } else { // reuse result of last iteration
gaussianBlur (out, out, W_L, H_L, sqrtf(SQR(RetinexScales[scale]) - SQR(RetinexScales[scale + 1])), buffer); gaussianBlur (out, out, W_L, H_L, sqrtf(SQR(RetinexScales[scale]) - SQR(RetinexScales[scale + 1])), buffer);
} }
}
if(mapmet == 4) { if(mapmet == 4) {
shradius /= 1.; shradius /= 1.;
} else { } else {
shradius = 40.; shradius = 40.;
}
//if(shHighlights > 0 || shShadows > 0) {
if(mapmet == 3) if(it == 1) {
shmap->updateL (out, shradius, true, 1); //wav Total
} }
//if(shHighlights > 0 || shShadows > 0) { if(mapmet == 2 && scale > 2) if(it == 1) {
if(mapmet == 3) if(it == 1) { shmap->updateL (out, shradius, true, 1); //wav partial
shmap->updateL (out, shradius, true, 1); //wav Total
}
if(mapmet == 2 && scale > 2) if(it == 1) {
shmap->updateL (out, shradius, true, 1); //wav partial
}
if(mapmet == 4) if(it == 1) {
shmap->updateL (out, shradius, false, 1); //gauss
}
//}
if (shmap) {
h_th = shmap->max_f - deh.htonalwidth * (shmap->max_f - shmap->avg) / 100;
s_th = deh.stonalwidth * (shmap->avg - shmap->min_f) / 100;
} }
if(mapmet == 4) if(it == 1) {
shmap->updateL (out, shradius, false, 1); //gauss
}
//}
if (shmap) {
h_th = shmap->max_f - deh.htonalwidth * (shmap->max_f - shmap->avg) / 100;
s_th = deh.stonalwidth * (shmap->avg - shmap->min_f) / 100;
}
#ifdef __SSE2__ #ifdef __SSE2__
vfloat pondv = F2V(pond); vfloat pondv = F2V(pond);
vfloat limMinv = F2V(ilimdx); vfloat limMinv = F2V(ilimdx);
vfloat limMaxv = F2V(limdx); vfloat limMaxv = F2V(limdx);
#endif #endif
if(mapmet > 0) { if(mapmet > 0) {
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp for #pragma omp parallel for
#endif #endif
for (int i = 0; i < H_L; i++) { for (int i = 0; i < H_L; i++) {
if(mapcontlutili) { if(mapcontlutili) {
int j = 0;
for (; j < W_L; j++) {
if(it == 1) {
out[i][j] = mapcurve[2.f * out[i][j]] / 2.f;
}
}
}
}
}
//if(shHighlights > 0 || shShadows > 0) {
if(((mapmet == 2 && scale > 2) || mapmet == 3 || mapmet == 4) && it == 1) {
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < H_L; i++) {
int j = 0; int j = 0;
for (; j < W_L; j++) { for (; j < W_L; j++) {
double mapval = 1.0 + shmap->map[i][j]; if(it == 1) {
double factor = 1.0; out[i][j] = mapcurve[2.f * out[i][j]] / 2.f;
if (mapval > h_th) {
factor = (h_th + (100.0 - shHighlights) * (mapval - h_th) / 100.0) / mapval;
} else if (mapval < s_th) {
factor = (s_th - (100.0 - shShadows) * (s_th - mapval) / 100.0) / mapval;
} }
out[i][j] *= factor;
} }
} }
} }
//} }
//if(shHighlights > 0 || shShadows > 0) {
if(((mapmet == 2 && scale > 2) || mapmet == 3 || mapmet == 4) && it == 1) {
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp for #pragma omp parallel for
#endif #endif
for (int i = 0; i < H_L; i++) { for (int i = 0; i < H_L; i++) {
int j = 0; int j = 0;
for (; j < W_L; j++) {
double mapval = 1.0 + shmap->map[i][j];
double factor = 1.0;
if (mapval > h_th) {
factor = (h_th + (100.0 - shHighlights) * (mapval - h_th) / 100.0) / mapval;
} else if (mapval < s_th) {
factor = (s_th - (100.0 - shShadows) * (s_th - mapval) / 100.0) / mapval;
}
out[i][j] *= factor;
}
}
}
//}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++) {
int j = 0;
#ifdef __SSE2__ #ifdef __SSE2__
if(useHslLin) { if(useHslLin) {
for (; j < W_L - 3; j += 4) { for (; j < W_L - 3; j += 4) {
_mm_storeu_ps(&luminance[i][j], LVFU(luminance[i][j]) + pondv * (LIMV(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv) )); _mm_storeu_ps(&luminance[i][j], LVFU(luminance[i][j]) + pondv * (LIMV(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv) ));
}
} else {
for (; j < W_L - 3; j += 4) {
_mm_storeu_ps(&luminance[i][j], LVFU(luminance[i][j]) + pondv * xlogf(LIMV(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv) ));
}
} }
} else {
for (; j < W_L - 3; j += 4) {
_mm_storeu_ps(&luminance[i][j], LVFU(luminance[i][j]) + pondv * xlogf(LIMV(LVFU(src[i][j]) / LVFU(out[i][j]), limMinv, limMaxv) ));
}
}
#endif #endif
if(useHslLin) { if(useHslLin) {
for (; j < W_L; j++) { for (; j < W_L; j++) {
luminance[i][j] += pond * (LIM(src[i][j] / out[i][j], ilimdx, limdx)); luminance[i][j] += pond * (LIM(src[i][j] / out[i][j], ilimdx, limdx));
} }
} else { } else {
for (; j < W_L; j++) { for (; j < W_L; j++) {
luminance[i][j] += pond * xlogf(LIM(src[i][j] / out[i][j], ilimdx, limdx)); // /logt ? luminance[i][j] += pond * xlogf(LIM(src[i][j] / out[i][j], ilimdx, limdx)); // /logt ?
}
} }
} }
} }