Issue 2594: My kingdom for more wavelets - various speedups, memory reductions, GUI changes and level numbering PP3 change.

This commit is contained in:
DrSlony
2015-02-22 01:35:30 +01:00
parent 32dae1856a
commit 43db722ece
22 changed files with 1316 additions and 908 deletions

View File

@@ -15,7 +15,7 @@
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* 2010 Ilya Popov <ilia_popov@rambler.ru>
* 2012 Emil Martinec <ejmartin@uchicago.edu>
* 2012 Emil Martinec <ejmartin@uchicago.edu>
* 2014 Ingo Weyrich <heckflosse@i-weyrich.de>
*/
@@ -24,8 +24,8 @@
#include <cstddef>
#include "rt_math.h"
#include "opthelper.h"
#include "stdio.h"
#include "opthelper.h"
#include "stdio.h"
namespace rtengine {
template<typename T>
@@ -36,14 +36,14 @@ namespace rtengine {
int lvl;
// whether to subsample the output
bool subsamp_out;
bool subsamp_out;
int numThreads;
// spacing of filter taps
int skip;
bool bigBlockOfMemory;
bool bigBlockOfMemory;
// allocation and destruction of data storage
T ** create(int n);
void destroy(T ** subbands);
@@ -57,19 +57,19 @@ namespace rtengine {
void AnalysisFilterSubsampHorizontal (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi,
const int taps, const int offset, const int srcwidth, const int dstwidth, const int row);
#ifdef __SSE2__
void AnalysisFilterSubsampVertical (T * srcbuffer, T * dstLo, T * dstHi, float (*filterLo)[4], float (*filterHi)[4],
const int taps, const int offset, const int width, const int height, const int row);
#else
void AnalysisFilterSubsampVertical (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi,
int const taps, const int offset, const int width, const int height, const int row);
#endif
void SynthesisFilterSubsampHorizontal (T * srcLo, T * srcHi, T * dst,
float *filterLo, float *filterHi, const int taps, const int offset, const int scrwidth, const int dstwidth, const int height);
#ifdef __SSE2__
void SynthesisFilterSubsampVertical (T * srcLo, T * srcHi, T * dst, float (*filterLo)[4], float (*filterHi)[4], const int taps, const int offset, const int width, const int srcheight, const int dstheight);
#else
void SynthesisFilterSubsampVertical (T * srcLo, T * srcHi, T * dst, float *filterLo, float *filterHi, const int taps, const int offset, const int width, const int srcheight, const int dstheight);
void AnalysisFilterSubsampVertical (T * srcbuffer, T * dstLo, T * dstHi, float (*filterLo)[4], float (*filterHi)[4],
const int taps, const int offset, const int width, const int height, const int row);
#else
void AnalysisFilterSubsampVertical (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi,
int const taps, const int offset, const int width, const int height, const int row);
#endif
void SynthesisFilterSubsampHorizontal (T * srcLo, T * srcHi, T * dst,
float *filterLo, float *filterHi, const int taps, const int offset, const int scrwidth, const int dstwidth, const int height);
#ifdef __SSE2__
void SynthesisFilterSubsampVertical (T * srcLo, T * srcHi, T * dst, float (*filterLo)[4], float (*filterHi)[4], const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend);
#else
void SynthesisFilterSubsampVertical (T * srcLo, T * srcHi, T * dst, float *filterLo, float *filterHi, const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend);
#endif
public:
bool memoryAllocationFailed;
@@ -89,88 +89,86 @@ namespace rtengine {
skip = 1;
for (int n=0; n<level; n++) {
skip *= 2-((subsamp>>n)&1);
}
skip /= skipcrop;
if(skip < 1) skip=1;
}
skip /= skipcrop;
if(skip < 1) skip=1;
}
m_w2 = (subsamp_out ? (w+1)/2 : w);
m_h2 = (subsamp_out ? (h+1)/2 : h);
wavcoeffs = create((m_w2)*(m_h2));
wavcoeffs = create((m_w2)*(m_h2));
if(!memoryAllocationFailed)
decompose_level(src, dst, filterV, filterH, len, offset);
}
~wavelet_level()
{
~wavelet_level() {
destroy(wavcoeffs);
}
T ** subbands() const
{
T ** subbands() const {
return wavcoeffs;
}
T * lopass() const
{
T * lopass() const {
return wavcoeffs[0];
}
int width() const
{
int width() const {
return m_w2;
}
int height() const
{
int height() const {
return m_h2;
}
int stride() const
{
int stride() const {
return skip;
}
bool bigBlockOfMemoryUsed() const {
return bigBlockOfMemory;
}
template<typename E>
void decompose_level(E *src, E *dst, float *filterV, float *filterH, int len, int offset);
template<typename E>
void reconstruct_level(E* tmpLo, E* tmpHi, E *src, E *dst, float *filterV, float *filterH, int taps, int offset);
void reconstruct_level(E* tmpLo, E* tmpHi, E *src, E *dst, float *filterV, float *filterH, int taps, int offset, const float blend = 1.f);
};
template<typename T>
T ** wavelet_level<T>::create(int n) {
T * data = new (std::nothrow) T[3*n];
if(data == NULL) {
bigBlockOfMemory = false;
T * data = new (std::nothrow) T[3*n];
if(data == NULL) {
bigBlockOfMemory = false;
}
T ** subbands = new T*[4];
for(int j = 1; j < 4; j++) {
for(int j = 1; j < 4; j++) {
if(bigBlockOfMemory)
subbands[j] = data + n * (j-1);
else {
subbands[j] = new (std::nothrow) T[n];
if(subbands[j] == NULL) {
printf("Couldn't allocate memory in level %d of wavelet\n",lvl);
memoryAllocationFailed = true;
}
}
subbands[j] = data + n * (j-1);
else {
subbands[j] = new (std::nothrow) T[n];
if(subbands[j] == NULL) {
printf("Couldn't allocate memory in level %d of wavelet\n",lvl);
memoryAllocationFailed = true;
}
}
}
return subbands;
}
template<typename T>
void wavelet_level<T>::destroy(T ** subbands) {
if(subbands) {
if(subbands) {
if(bigBlockOfMemory)
delete[] subbands[1];
else {
for(int j = 1; j < 4; j++) {
if(subbands[j] != NULL)
delete[] subbands[j];
}
delete[] subbands[1];
else {
for(int j = 1; j < 4; j++) {
if(subbands[j] != NULL)
delete[] subbands[j];
}
}
delete[] subbands;
}
@@ -180,7 +178,7 @@ namespace rtengine {
void wavelet_level<T>::AnalysisFilterHaarHorizontal (const T * const RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, const int width, const int row) {
/* Basic convolution code
* Applies a Haar filter
*/
*/
for(int i = 0; i < (width - skip); i++) {
dstLo[row*width+i] = (srcbuffer[i] + srcbuffer[i+skip]);
dstHi[row*width+i] = (srcbuffer[i] - srcbuffer[i+skip]);
@@ -190,22 +188,22 @@ namespace rtengine {
dstHi[row*width+i] = (srcbuffer[i] - srcbuffer[i-skip]);
}
}
template<typename T> void wavelet_level<T>::AnalysisFilterHaarVertical (const T * const RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, const int width, const int height, const int row) {
/* Basic convolution code
* Applies a Haar filter
*/
if(row < (height - skip)) {
for(int j=0;j<width;j++) {
*/
if(row < (height - skip)) {
for(int j=0;j<width;j++) {
dstLo[j] = 0.25f*(srcbuffer[row*width+j] + srcbuffer[(row+skip)*width+j]);
dstHi[j] = 0.25f*(srcbuffer[row*width+j] - srcbuffer[(row+skip)*width+j]);
}
}
} else if(row>=max(height-skip,skip)) {
for(int j=0;j<width;j++) {
for(int j=0;j<width;j++) {
dstLo[j] = 0.25f*(srcbuffer[row*width+j] + srcbuffer[(row-skip)*width+j]);
dstHi[j] = 0.25f*(srcbuffer[row*width+j] - srcbuffer[(row-skip)*width+j]);
}
}
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -216,47 +214,47 @@ namespace rtengine {
/* Basic convolution code
* Applies a Haar filter
*
*/
#ifdef _OPENMP
*/
#ifdef _OPENMP
#pragma omp parallel for num_threads(numThreads) if(numThreads>1)
#endif
#endif
for (int k=0; k<height; k++) {
for(int i = 0; i < skip; i++) {
dst[k*width+i] = (srcLo[k*width+i] + srcHi[k*width+i]);
}
}
for(int i = skip; i < width; i++) {
dst[k*width+i] = 0.5f*(srcLo[k*width+i] + srcHi[k*width+i] + srcLo[k*width+i-skip] - srcHi[k*width+i-skip]);
}
}
}
template<typename T> void wavelet_level<T>::SynthesisFilterHaarVertical (const T * const RESTRICT srcLo, const T * const RESTRICT srcHi, T * RESTRICT dst, const int width, const int height) {
/* Basic convolution code
* Applies a Haar filter
*
*/
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads) if(numThreads>1)
#endif
{
#ifdef _OPENMP
#pragma omp for nowait
#endif
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads) if(numThreads>1)
#endif
{
#ifdef _OPENMP
#pragma omp for nowait
#endif
for(int i = 0; i < skip; i++) {
for(int j=0;j<width;j++)
for(int j=0;j<width;j++)
dst[width*i+j] = (srcLo[i*width+j] + srcHi[i*width+j]);
}
#ifdef _OPENMP
#pragma omp for
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = skip; i < height; i++) {
for(int j=0;j<width;j++)
for(int j=0;j<width;j++)
dst[width*i+j] = 0.5f*(srcLo[i*width+j] + srcHi[i*width+j] + srcLo[(i-skip)*width+j] - srcHi[(i-skip)*width+j]);
}
}
}
}
template<typename T>
void wavelet_level<T>::AnalysisFilterSubsampHorizontal (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float * RESTRICT filterLo, float *RESTRICT filterHi,
const int taps, const int offset, const int srcwidth, const int dstwidth, const int row) {
@@ -266,16 +264,16 @@ namespace rtengine {
* the input pixel, and skipping 'skip' pixels between taps
* Output is subsampled by two
*/
// calculate coefficients
// calculate coefficients
for(int i = 0; i < srcwidth; i+=2) {
float lo = 0.f, hi = 0.f;
if (LIKELY(i>skip*taps && i<srcwidth-skip*taps)) {//bulk
for (int j=0, l=-skip*offset; j<taps; j++, l+=skip) {
for (int j=0, l=-skip*offset; j<taps; j++, l+=skip) {
float src = srcbuffer[i-l];
lo += filterLo[j] * src;//lopass channel
hi += filterHi[j] * src;//hipass channel
}
} else {
}
} else {
for (int j=0; j<taps; j++) {
int arg = max(0,min(i+skip*(offset-j),srcwidth-1));//clamped BC's
lo += filterLo[j] * srcbuffer[arg];//lopass channel
@@ -284,12 +282,12 @@ namespace rtengine {
}
dstLo[row*dstwidth+((i/2))] = lo;
dstHi[row*dstwidth+((i/2))] = hi;
}
}
}
#ifdef __SSE2__
template<typename T> void wavelet_level<T>::AnalysisFilterSubsampVertical (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float (* RESTRICT filterLo)[4], float (* RESTRICT filterHi)[4],
const int taps, const int offset, const int width, const int height, const int row) {
#ifdef __SSE2__
template<typename T> SSEFUNCTION void wavelet_level<T>::AnalysisFilterSubsampVertical (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float (* RESTRICT filterLo)[4], float (* RESTRICT filterHi)[4],
const int taps, const int offset, const int width, const int height, const int row) {
/* Basic convolution code
* Applies an FIR filter 'filter' with filter length 'taps',
@@ -298,17 +296,17 @@ namespace rtengine {
* Output is subsampled by two
*/
// calculate coefficients
if (LIKELY(row>skip*taps && row<height-skip*taps)) {//bulk
// calculate coefficients
if (LIKELY(row>skip*taps && row<height-skip*taps)) {//bulk
int k;
for (k=0; k<width-3; k+=4) {
__m128 lov = _mm_setzero_ps();
__m128 hiv = _mm_setzero_ps();
for (int j=0, l=-skip*offset; j<taps; j++, l+=skip) {
for (k=0; k<width-3; k+=4) {
__m128 lov = _mm_setzero_ps();
__m128 hiv = _mm_setzero_ps();
for (int j=0, l=-skip*offset; j<taps; j++, l+=skip) {
__m128 srcv = LVFU(srcbuffer[(row-l)*width+k]);
lov += LVF(filterLo[j][0]) * srcv;//lopass channel
hiv += LVF(filterHi[j][0]) * srcv;//hipass channel
}
}
STVF(dstLo[k], lov);
STVF(dstHi[k], hiv);
}
@@ -317,17 +315,17 @@ namespace rtengine {
for (int j=0, l=-skip*offset; j<taps; j++, l+=skip) {
lo += filterLo[j][0] * srcbuffer[(row-l)*width+k];//lopass channel
hi += filterHi[j][0] * srcbuffer[(row-l)*width+k];//hipass channel
}
}
dstLo[k] = lo;
dstHi[k] = hi;
}
} else {//boundary
} else {//boundary
int k;
for (k=0; k<width-3; k+=4) {
__m128 lov = _mm_setzero_ps();
__m128 hiv = _mm_setzero_ps();
__m128 lov = _mm_setzero_ps();
__m128 hiv = _mm_setzero_ps();
for (int j=0; j<taps; j++) {
int arg = max(0,min(row+skip*(offset-j),height-1))*width+k;//clamped BC's
int arg = max(0,min(row+skip*(offset-j),height-1))*width+k;//clamped BC's
__m128 srcv = LVFU(srcbuffer[arg]);
lov += LVF(filterLo[j][0]) * srcv;//lopass channel
hiv += LVF(filterHi[j][0]) * srcv;//hipass channel
@@ -347,9 +345,9 @@ namespace rtengine {
}
}
}
#else
#else
template<typename T> void wavelet_level<T>::AnalysisFilterSubsampVertical (T * RESTRICT srcbuffer, T * RESTRICT dstLo, T * RESTRICT dstHi, float * RESTRICT filterLo, float * RESTRICT filterHi,
const int taps, const int offset, const int width, const int height, const int row) {
const int taps, const int offset, const int width, const int height, const int row) {
/* Basic convolution code
* Applies an FIR filter 'filter' with filter length 'taps',
@@ -358,14 +356,14 @@ namespace rtengine {
* Output is subsampled by two
*/
// calculate coefficients
// calculate coefficients
if (LIKELY(row>skip*taps && row<height-skip*taps)) {//bulk
for (int k=0; k<width; k++) {
float lo = 0.f, hi = 0.f;
for (int j=0, l=-skip*offset; j<taps; j++, l+=skip) {
lo += filterLo[j] * srcbuffer[(row-l)*width+k];//lopass channel
hi += filterHi[j] * srcbuffer[(row-l)*width+k];//hipass channel
}
}
dstLo[k] = lo;
dstHi[k] = hi;
}
@@ -382,9 +380,9 @@ namespace rtengine {
}
}
}
#endif
#endif
template<typename T> void wavelet_level<T>::SynthesisFilterSubsampHorizontal (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float * RESTRICT filterLo, float * RESTRICT filterHi, const int taps, const int offset, const int srcwidth, const int dstwidth, const int height) {
/* Basic convolution code
@@ -393,13 +391,13 @@ namespace rtengine {
* the input pixel, and skipping 'skip' pixels between taps
* Output is subsampled by two
*/
// calculate coefficients
int shift = skip*(taps-offset-1);//align filter with data
#ifdef _OPENMP
#pragma omp parallel for num_threads(numThreads) if(numThreads>1)
#endif
for (int k=0; k<height; k++) {
int shift = skip*(taps-offset-1);//align filter with data
#ifdef _OPENMP
#pragma omp parallel for num_threads(numThreads) if(numThreads>1)
#endif
for (int k=0; k<height; k++) {
int i;
for(i=0; i<=min(skip*taps,dstwidth); i++) {
float tot=0.f;
@@ -411,7 +409,7 @@ namespace rtengine {
tot += ((filterLo[j] * srcLo[k*srcwidth+arg] + filterHi[j] * srcHi[k*srcwidth+arg]));
}
dst[k*dstwidth+i] = tot;
}
}
for(; i<min(dstwidth-skip*taps,dstwidth); i++) {
float tot=0.f;
//TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip'
@@ -421,7 +419,7 @@ namespace rtengine {
tot += ((filterLo[j] * srcLo[k*srcwidth+i_src-l] + filterHi[j] * srcHi[k*srcwidth+i_src-l]));
}
dst[k*dstwidth+i] = tot;
}
}
for(; i < dstwidth; i++) {
float tot=0.f;
//TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip'
@@ -432,12 +430,12 @@ namespace rtengine {
tot += ((filterLo[j] * srcLo[k*srcwidth+arg] + filterHi[j] * srcHi[k*srcwidth+arg]));
}
dst[k*dstwidth+i] = tot;
}
}
}
}
#ifdef __SSE2__
template<typename T> SSEFUNCTION void wavelet_level<T>::SynthesisFilterSubsampVertical (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float (* RESTRICT filterLo)[4], float (* RESTRICT filterHi)[4], const int taps, const int offset, const int width, const int srcheight, const int dstheight)
template<typename T> SSEFUNCTION void wavelet_level<T>::SynthesisFilterSubsampVertical (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float (* RESTRICT filterLo)[4], float (* RESTRICT filterHi)[4], const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend)
{
/* Basic convolution code
@@ -446,34 +444,36 @@ namespace rtengine {
* the input pixel, and skipping 'skip' pixels between taps
* Output is subsampled by two
*/
const float srcFactor = 1.f - blend;
// calculate coefficients
int shift=skip*(taps-offset-1);//align filter with data
__m128 fourv = _mm_set1_ps(4.f);
#ifdef _OPENMP
int shift=skip*(taps-offset-1);//align filter with data
__m128 fourv = _mm_set1_ps(4.f);
__m128 srcFactorv = _mm_set1_ps(srcFactor);
__m128 dstFactorv = _mm_set1_ps(blend);
#ifdef _OPENMP
#pragma omp parallel for num_threads(numThreads) if(numThreads>1)
#endif
#endif
for(int i = 0; i < dstheight; i++) {
int i_src = (i+shift)/2;
int begin = (i+shift)%2;
//TODO: this is correct only if skip=1; otherwise, want to work with cosets of length 'skip'
if (LIKELY(i>skip*taps && i<(dstheight-skip*taps))) {//bulk
if (LIKELY(i>skip*taps && i<(dstheight-skip*taps))) {//bulk
int k;
for (k=0; k<width-3; k+=4) {
for (k=0; k<width-3; k+=4) {
__m128 totv = _mm_setzero_ps();
for (int j=begin, l=0; j<taps; j+=2, l+=skip) {
totv += ((LVF(filterLo[j][0]) * LVFU(srcLo[(i_src-l)*width+k]) + LVF(filterHi[j][0]) * LVFU(srcHi[(i_src-l)*width+k])));
}
_mm_storeu_ps(&dst[width*i+k], fourv * totv);
}
}
_mm_storeu_ps(&dst[width*i+k], LVFU(dst[width*i+k]) * srcFactorv + dstFactorv * fourv * totv);
}
for (; k<width; k++) {
float tot = 0.f;
for (int j=begin, l=0; j<taps; j+=2, l+=skip) {
tot += ((filterLo[j][0] * srcLo[(i_src-l)*width+k] + filterHi[j][0] * srcHi[(i_src-l)*width+k]));
}
dst[width*i+k] = 4.f * tot;
}
} else {//boundary
}
dst[width*i+k] = dst[width*i+k] * srcFactor + blend * 4.f * tot;
}
} else {//boundary
int k;
for (k=0; k<width-3; k+=4) {
__m128 totv = _mm_setzero_ps();
@@ -481,7 +481,7 @@ namespace rtengine {
int arg = max(0,min((i_src-l),srcheight-1))*width+k;//clamped BC's
totv += ((LVF(filterLo[j][0]) * LVFU(srcLo[arg]) + LVF(filterHi[j][0]) * LVFU(srcHi[arg])));
}
_mm_storeu_ps(&dst[width*i+k], fourv * totv);
_mm_storeu_ps(&dst[width*i+k], LVFU(dst[width*i+k]) * srcFactorv + dstFactorv * fourv * totv);
}
for (; k<width; k++) {
float tot = 0.f;
@@ -489,13 +489,13 @@ namespace rtengine {
int arg = max(0,min((i_src-l),srcheight-1))*width+k;//clamped BC's
tot += ((filterLo[j][0] * srcLo[arg] + filterHi[j][0] * srcHi[arg]));
}
dst[width*i+k] = 4.f * tot;
dst[width*i+k] = dst[width*i+k] * srcFactor + blend * 4.f * tot;
}
}
}
}
}
#else
template<typename T> void wavelet_level<T>::SynthesisFilterSubsampVertical (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float * RESTRICT filterLo, float * RESTRICT filterHi, const int taps, const int offset, const int width, const int srcheight, const int dstheight)
#else
template<typename T> void wavelet_level<T>::SynthesisFilterSubsampVertical (T * RESTRICT srcLo, T * RESTRICT srcHi, T * RESTRICT dst, float * RESTRICT filterLo, float * RESTRICT filterHi, const int taps, const int offset, const int width, const int srcheight, const int dstheight, const float blend)
{
/* Basic convolution code
@@ -504,13 +504,14 @@ namespace rtengine {
* the input pixel, and skipping 'skip' pixels between taps
* Output is subsampled by two
*/
const float srcFactor = 1.f - blend;
// calculate coefficients
int shift=skip*(taps-offset-1);//align filter with data
#ifdef _OPENMP
int shift=skip*(taps-offset-1);//align filter with data
#ifdef _OPENMP
#pragma omp parallel for num_threads(numThreads) if(numThreads>1)
#endif
#endif
for(int i = 0; i < dstheight; i++) {
int i_src = (i+shift)/2;
int begin = (i+shift)%2;
@@ -520,9 +521,9 @@ namespace rtengine {
float tot = 0.f;
for (int j=begin, l=0; j<taps; j+=2, l+=skip) {
tot += ((filterLo[j] * srcLo[(i_src-l)*width+k] + filterHi[j] * srcHi[(i_src-l)*width+k]));
}
dst[width*i+k] = 4.f * tot;
}
}
dst[width*i+k] = dst[width*i+k] * srcFactor + blend * 4.f * tot;
}
} else {//boundary
for (int k=0; k<width; k++) {
float tot = 0.f;
@@ -530,121 +531,121 @@ namespace rtengine {
int arg = max(0,min((i_src-l),srcheight-1))*width+k;//clamped BC's
tot += ((filterLo[j] * srcLo[arg] + filterHi[j] * srcHi[arg]));
}
dst[width*i+k] = 4.f * tot;
dst[width*i+k] = dst[width*i+k] * srcFactor + blend * 4.f * tot;
}
}
}
}
}
#endif
#endif
#ifdef __SSE2__
template<typename T> template<typename E> SSEFUNCTION void wavelet_level<T>::decompose_level(E *src, E *dst, float *filterV, float *filterH, int taps, int offset) {
/* filter along rows and columns */
/* filter along rows and columns */
float filterVarray[2*taps][4] ALIGNED64;
if(subsamp_out) {
for(int i=0;i<2*taps;i++) {
for(int j=0;j<4;j++) {
filterVarray[i][j] = filterV[i];
}
}
}
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads) if(numThreads>1)
#endif
{
T tmpLo[m_w] ALIGNED64;
T tmpHi[m_w] ALIGNED64;
if(subsamp_out) {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row+=2) {
AnalysisFilterSubsampVertical (src, tmpLo, tmpHi, filterVarray, filterVarray+taps, taps, offset, m_w, m_h, row);
AnalysisFilterSubsampHorizontal (tmpLo, dst, wavcoeffs[1], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
AnalysisFilterSubsampHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
}
} else {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row++) {
AnalysisFilterHaarVertical (src, tmpLo, tmpHi, m_w, m_h, row);
AnalysisFilterHaarHorizontal (tmpLo, dst, wavcoeffs[1], m_w, row);
AnalysisFilterHaarHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], m_w, row);
if(subsamp_out) {
for(int i=0;i<2*taps;i++) {
for(int j=0;j<4;j++) {
filterVarray[i][j] = filterV[i];
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads) if(numThreads>1)
#endif
{
T tmpLo[m_w] ALIGNED64;
T tmpHi[m_w] ALIGNED64;
if(subsamp_out) {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row+=2) {
AnalysisFilterSubsampVertical (src, tmpLo, tmpHi, filterVarray, filterVarray+taps, taps, offset, m_w, m_h, row);
AnalysisFilterSubsampHorizontal (tmpLo, dst, wavcoeffs[1], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
AnalysisFilterSubsampHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
}
} else {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row++) {
AnalysisFilterHaarVertical (src, tmpLo, tmpHi, m_w, m_h, row);
AnalysisFilterHaarHorizontal (tmpLo, dst, wavcoeffs[1], m_w, row);
AnalysisFilterHaarHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], m_w, row);
}
}
}
}
#else
#else
template<typename T> template<typename E> void wavelet_level<T>::decompose_level(E *src, E *dst, float *filterV, float *filterH, int taps, int offset) {
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads) if(numThreads>1)
#endif
{
T tmpLo[m_w] ALIGNED64;
T tmpHi[m_w] ALIGNED64;
#ifdef _OPENMP
#pragma omp parallel num_threads(numThreads) if(numThreads>1)
#endif
{
T tmpLo[m_w] ALIGNED64;
T tmpHi[m_w] ALIGNED64;
/* filter along rows and columns */
if(subsamp_out) {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row+=2) {
if(subsamp_out) {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row+=2) {
AnalysisFilterSubsampVertical (src, tmpLo, tmpHi, filterV, filterV+taps, taps, offset, m_w, m_h, row);
AnalysisFilterSubsampHorizontal (tmpLo, dst, wavcoeffs[1], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
AnalysisFilterSubsampHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
}
} else {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row++) {
AnalysisFilterHaarVertical (src, tmpLo, tmpHi, m_w, m_h, row);
AnalysisFilterHaarHorizontal (tmpLo, dst, wavcoeffs[1], m_w, row);
AnalysisFilterHaarHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], m_w, row);
AnalysisFilterSubsampHorizontal (tmpLo, dst, wavcoeffs[1], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
AnalysisFilterSubsampHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], filterH, filterH+taps, taps, offset, m_w, m_w2, row/2);
}
}
} else {
#ifdef _OPENMP
#pragma omp for
#endif
for(int row=0;row<m_h;row++) {
AnalysisFilterHaarVertical (src, tmpLo, tmpHi, m_w, m_h, row);
AnalysisFilterHaarHorizontal (tmpLo, dst, wavcoeffs[1], m_w, row);
AnalysisFilterHaarHorizontal (tmpHi, wavcoeffs[2], wavcoeffs[3], m_w, row);
}
}
}
}
#endif
#ifdef __SSE2__
template<typename T> template<typename E> SSEFUNCTION void wavelet_level<T>::reconstruct_level(E* tmpLo, E* tmpHi, E * src, E *dst, float *filterV, float *filterH, int taps, int offset) {
if(memoryAllocationFailed)
return;
/* filter along rows and columns */
if (subsamp_out) {
float filterVarray[2*taps][4] ALIGNED64;
for(int i=0;i<2*taps;i++) {
for(int j=0;j<4;j++) {
filterVarray[i][j] = filterV[i];
}
}
SynthesisFilterSubsampHorizontal (src, wavcoeffs[1], tmpLo, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
SynthesisFilterSubsampHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
SynthesisFilterSubsampVertical (tmpLo, tmpHi, dst, filterVarray, filterVarray+taps, taps, offset, m_w, m_h2, m_h);
} else {
SynthesisFilterHaarHorizontal (src, wavcoeffs[1], tmpLo, m_w, m_h2);
SynthesisFilterHaarHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, m_w, m_h2);
SynthesisFilterHaarVertical (tmpLo, tmpHi, dst, m_w, m_h);
}
}
#else
template<typename T> template<typename E> void wavelet_level<T>::reconstruct_level(E* tmpLo, E* tmpHi, E * src, E *dst, float *filterV, float *filterH, int taps, int offset) {
if(memoryAllocationFailed)
return;
#ifdef __SSE2__
template<typename T> template<typename E> SSEFUNCTION void wavelet_level<T>::reconstruct_level(E* tmpLo, E* tmpHi, E * src, E *dst, float *filterV, float *filterH, int taps, int offset, const float blend) {
if(memoryAllocationFailed)
return;
/* filter along rows and columns */
if (subsamp_out) {
SynthesisFilterSubsampHorizontal (src, wavcoeffs[1], tmpLo, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
float filterVarray[2*taps][4] ALIGNED64;
for(int i=0;i<2*taps;i++) {
for(int j=0;j<4;j++) {
filterVarray[i][j] = filterV[i];
}
}
SynthesisFilterSubsampHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
SynthesisFilterSubsampVertical (tmpLo, tmpHi, dst, filterV, filterV+taps, taps, offset, m_w, m_h2, m_h);
} else {
SynthesisFilterHaarHorizontal (src, wavcoeffs[1], tmpLo, m_w, m_h2);
SynthesisFilterSubsampHorizontal (src, wavcoeffs[1], tmpLo, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
SynthesisFilterSubsampVertical (tmpLo, tmpHi, dst, filterVarray, filterVarray+taps, taps, offset, m_w, m_h2, m_h, blend);
} else {
SynthesisFilterHaarHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, m_w, m_h2);
SynthesisFilterHaarVertical (tmpLo, tmpHi, dst, m_w, m_h);
SynthesisFilterHaarHorizontal (src, wavcoeffs[1], tmpLo, m_w, m_h2);
SynthesisFilterHaarVertical (tmpLo, tmpHi, dst, m_w, m_h);
}
}
#else
template<typename T> template<typename E> void wavelet_level<T>::reconstruct_level(E* tmpLo, E* tmpHi, E * src, E *dst, float *filterV, float *filterH, int taps, int offset, const float blend) {
if(memoryAllocationFailed)
return;
/* filter along rows and columns */
if (subsamp_out) {
SynthesisFilterSubsampHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
SynthesisFilterSubsampHorizontal (src, wavcoeffs[1], tmpLo, filterH, filterH+taps, taps, offset, m_w2, m_w, m_h2);
SynthesisFilterSubsampVertical (tmpLo, tmpHi, dst, filterV, filterV+taps, taps, offset, m_w, m_h2, m_h, blend);
} else {
SynthesisFilterHaarHorizontal (wavcoeffs[2], wavcoeffs[3], tmpHi, m_w, m_h2);
SynthesisFilterHaarHorizontal (src, wavcoeffs[1], tmpLo, m_w, m_h2);
SynthesisFilterHaarVertical (tmpLo, tmpHi, dst, m_w, m_h);
}
}
#endif