revamped and simplified dehaze -- now it's finally usable

This commit is contained in:
Alberto Griggio
2018-10-16 23:20:11 +02:00
parent 7c10f92ace
commit 4d0ddd56e5
8 changed files with 87 additions and 237 deletions

View File

@@ -70,10 +70,10 @@ int get_dark_channel(const array2D<float> &R, const array2D<float> &G, const arr
#pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; y += patchsize) {
int pH = std::min(y+patchsize, H);
int pH = min(y+patchsize, H);
for (int x = 0; x < W; x += patchsize, ++npatches) {
float val = RT_INFINITY_F;
int pW = std::min(x+patchsize, W);
int pW = min(x+patchsize, W);
for (int yy = y; yy < pH; ++yy) {
float yval = RT_INFINITY_F;
for (int xx = x; xx < pW; ++xx) {
@@ -93,34 +93,6 @@ int get_dark_channel(const array2D<float> &R, const array2D<float> &G, const arr
for (int yy = y; yy < pH; ++yy) {
std::fill(dst[yy]+x, dst[yy]+pW, val);
}
float val2 = RT_INFINITY_F;
for (int yy = y; yy < pH; ++yy) {
for (int xx = x; xx < pW; ++xx) {
float r = R[yy][xx];
float g = G[yy][xx];
float b = B[yy][xx];
if (ambient) {
r /= ambient[0];
g /= ambient[1];
b /= ambient[2];
}
float l = min(r, g, b);
if (l >= 2.f * val) {
val2 = min(val2, l);
dst[yy][xx] = -1;
}
}
}
if (val2 < RT_INFINITY_F) {
val2 = LIM01(val2);
for (int yy = y; yy < pH; ++yy) {
for (int xx = x; xx < pW; ++xx) {
if (dst[yy][xx] < 0.f) {
dst[yy][xx] = val2;
}
}
}
}
}
}
@@ -128,7 +100,7 @@ int get_dark_channel(const array2D<float> &R, const array2D<float> &G, const arr
}
int estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, const array2D<float> &B, const array2D<float> &dark, const array2D<float> &Y, int patchsize, int npatches, float ambient[3])
float estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, const array2D<float> &B, const array2D<float> &dark, int patchsize, int npatches, float ambient[3])
{
const int W = R.width();
const int H = R.height();
@@ -143,7 +115,7 @@ int estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, con
return q.top();
};
float lim = RT_INFINITY_F;
float darklim = RT_INFINITY_F;
{
std::priority_queue<float> p;
for (int y = 0; y < H; y += patchsize) {
@@ -151,7 +123,7 @@ int estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, con
p.push(dark[y][x]);
}
}
lim = get_percentile(p, 0.95);
darklim = get_percentile(p, 0.95);
}
std::vector<std::pair<int, int>> patches;
@@ -159,7 +131,7 @@ int estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, con
for (int y = 0; y < H; y += patchsize) {
for (int x = 0; x < W; x += patchsize) {
if (dark[y][x] >= lim) {
if (dark[y][x] >= darklim) {
patches.push_back(std::make_pair(x, y));
}
}
@@ -170,35 +142,36 @@ int estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, con
<< " patches" << std::endl;
}
float bright_lim = RT_INFINITY_F;
{
std::priority_queue<float> l;
for (auto &p : patches) {
const int pW = std::min(p.first+patchsize, W);
const int pH = std::min(p.second+patchsize, H);
const int pW = min(p.first+patchsize, W);
const int pH = min(p.second+patchsize, H);
for (int y = p.second; y < pH; ++y) {
for (int x = p.first; x < pW; ++x) {
l.push(Y[y][x]);
l.push(R[y][x] + G[y][x] + B[y][x]);
}
}
}
lim = get_percentile(l, 0.95);
bright_lim = get_percentile(l, 0.95);
}
double rr = 0, gg = 0, bb = 0;
int n = 0;
for (auto &p : patches) {
const int pW = std::min(p.first+patchsize, W);
const int pH = std::min(p.second+patchsize, H);
const int pW = min(p.first+patchsize, W);
const int pH = min(p.second+patchsize, H);
for (int y = p.second; y < pH; ++y) {
for (int x = p.first; x < pW; ++x) {
if (Y[y][x] >= lim) {
float r = R[y][x];
float g = G[y][x];
float b = B[y][x];
float r = R[y][x];
float g = G[y][x];
float b = B[y][x];
if (r + g + b >= bright_lim) {
rr += r;
gg += g;
bb += b;
@@ -211,65 +184,12 @@ int estimate_ambient_light(const array2D<float> &R, const array2D<float> &G, con
ambient[1] = gg / n;
ambient[2] = bb / n;
return n;
// taken from darktable
return darklim > 0 ? -1.125f * std::log(darklim) : std::log(std::numeric_limits<float>::max()) / 2;
}
void get_luminance(Imagefloat *img, array2D<float> &Y, TMatrix ws, bool multithread)
{
const int W = img->getWidth();
const int H = img->getHeight();
#ifdef _OPENMP
#pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
Y[y][x] = Color::rgbLuminance(img->r(y, x), img->g(y, x), img->b(y, x), ws);
}
}
}
void apply_contrast(array2D<float> &dark, float ambient, int contrast, double scale, bool multithread)
{
if (contrast) {
const int W = dark.width();
const int H = dark.height();
float avg = ambient * 0.25f;
float c = contrast * 0.3f;
std::vector<double> pts = {
DCT_NURBS,
0, //black point. Value in [0 ; 1] range
0, //black point. Value in [0 ; 1] range
avg - avg * (0.6 - c / 250.0), //toe point
avg - avg * (0.6 + c / 250.0), //value at toe point
avg + (1 - avg) * (0.6 - c / 250.0), //shoulder point
avg + (1 - avg) * (0.6 + c / 250.0), //value at shoulder point
1., // white point
1. // value at white point
};
const DiagonalCurve curve(pts, CURVES_MIN_POLY_POINTS / scale);
#ifdef _OPENMP
#pragma omp parallel for if (multithread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
dark[y][x] = curve.getVal(dark[y][x]);
}
}
}
}
void extract_channels(Imagefloat *img, const array2D<float> &Y, array2D<float> &r, array2D<float> &g, array2D<float> &b, int radius, float epsilon, bool multithread)
void extract_channels(Imagefloat *img, array2D<float> &r, array2D<float> &g, array2D<float> &b, int radius, float epsilon, bool multithread)
{
const int W = img->getWidth();
const int H = img->getHeight();
@@ -285,11 +205,12 @@ void extract_channels(Imagefloat *img, const array2D<float> &Y, array2D<float> &
}
}
guidedFilter(Y, r, r, radius, epsilon, multithread);
guidedFilter(Y, g, g, radius, epsilon, multithread);
guidedFilter(Y, b, b, radius, epsilon, multithread);
guidedFilter(r, r, r, radius, epsilon, multithread, radius / 2);
guidedFilter(g, g, g, radius, epsilon, multithread, radius / 2);
guidedFilter(b, b, b, radius, epsilon, multithread, radius / 2);
}
} // namespace
@@ -309,31 +230,33 @@ void ImProcFunctions::dehaze(Imagefloat *img)
std::cout << "dehaze: strength = " << strength << std::endl;
}
TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile);
array2D<float> Y(W, H);
get_luminance(img, Y, ws, multiThread);
array2D<float> R(W, H);
array2D<float> G(W, H);
array2D<float> B(W, H);
int patchsize = max(int(20 / scale), 2);
extract_channels(img, Y, R, G, B, patchsize, 1e-1, multiThread);
array2D<float> dark(W, H);
patchsize = std::max(W / (200 + params->dehaze.detail * (SGN(params->dehaze.detail) > 0 ? 4 : 1)), 2);
int npatches = get_dark_channel(R, G, B, dark, patchsize, nullptr, multiThread);
DEBUG_DUMP(dark);
int patchsize = max(int(5 / scale), 2);
int npatches = 0;
float ambient[3];
int n = estimate_ambient_light(R, G, B, dark, Y, patchsize, npatches, ambient);
float ambient_Y = Color::rgbLuminance(ambient[0], ambient[1], ambient[2], ws);
array2D<float> &t_tilde = dark;
float max_t = 0.f;
if (options.rtSettings.verbose) {
std::cout << "dehaze: ambient light is "
<< ambient[0] << ", " << ambient[1] << ", " << ambient[2]
<< " (average of " << n << ")"
<< std::endl;
std::cout << " ambient luminance is " << ambient_Y << std::endl;
{
array2D<float> R(W, H);
array2D<float> G(W, H);
array2D<float> B(W, H);
extract_channels(img, R, G, B, patchsize, 1e-1, multiThread);
patchsize = max(max(W, H) / 600, 2);
npatches = get_dark_channel(R, G, B, dark, patchsize, nullptr, multiThread);
DEBUG_DUMP(dark);
max_t = estimate_ambient_light(R, G, B, dark, patchsize, npatches, ambient);
if (options.rtSettings.verbose) {
std::cout << "dehaze: ambient light is "
<< ambient[0] << ", " << ambient[1] << ", " << ambient[2]
<< std::endl;
}
get_dark_channel(R, G, B, dark, patchsize, ambient, multiThread);
}
if (min(ambient[0], ambient[1], ambient[2]) < 0.01f) {
@@ -344,59 +267,41 @@ void ImProcFunctions::dehaze(Imagefloat *img)
return; // probably no haze at all
}
array2D<float> &t_tilde = dark;
get_dark_channel(R, G, B, dark, patchsize, ambient, multiThread);
apply_contrast(dark, ambient_Y, params->dehaze.depth, scale, multiThread);
DEBUG_DUMP(t_tilde);
if (!params->dehaze.showDepthMap) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
dark[y][x] = 1.f - strength * dark[y][x];
}
}
}
float mult = 2.f;
if (params->dehaze.detail > 0) {
mult -= (params->dehaze.detail / 100.f) * 1.9f;
} else {
mult -= params->dehaze.detail / 10.f;
}
const int radius = max(int(patchsize * mult), 1);
const float epsilon = 2.5e-4;
array2D<float> &t = t_tilde;
if (!params->dehaze.showDepthMap)
guidedFilter(Y, t_tilde, t, radius, epsilon, multiThread);
DEBUG_DUMP(t);
if (params->dehaze.showDepthMap) {
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
img->r(y, x) = img->g(y, x) = img->b(y, x) = t[y][x] * 65535.f;
}
}
return;
}
const float t0 = 0.1;
const float teps = 1e-3;
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
dark[y][x] = 1.f - strength * dark[y][x];
}
}
const int radius = patchsize * 4;
const float epsilon = 1e-7;
array2D<float> &t = t_tilde;
{
array2D<float> guideB(W, H, img->b.ptrs, ARRAY2D_BYREFERENCE);
guidedFilter(guideB, t_tilde, t, radius, epsilon, multiThread, patchsize);
}
DEBUG_DUMP(t);
float depth = -float(params->dehaze.depth) / 100.f;
const float t0 = max(1e-3f, std::exp(depth * max_t));
const float teps = 1e-3f;
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
// ensure that the transmission is such that to avoid clipping...
float rgb[3] = { img->r(y, x), img->g(y, x), img->b(y, x) };
// ... t >= tl to avoid negative values
float tl = 1.f - min(rgb[0]/ambient[0], rgb[1]/ambient[1], rgb[2]/ambient[2]);
// ... t >= tu to avoid values > 1
float tu = t0 - teps;
for (int c = 0; c < 3; ++c) {
if (ambient[c] < 1) {
@@ -404,44 +309,21 @@ void ImProcFunctions::dehaze(Imagefloat *img)
}
}
float mt = max(t[y][x], t0, tl + teps, tu + teps);
float r = (rgb[0] - ambient[0]) / mt + ambient[0];
float g = (rgb[1] - ambient[1]) / mt + ambient[1];
float b = (rgb[2] - ambient[2]) / mt + ambient[2];
if (params->dehaze.showDepthMap) {
img->r(y, x) = img->g(y, x) = img->b(y, x) = 1.f - mt;
} else {
float r = (rgb[0] - ambient[0]) / mt + ambient[0];
float g = (rgb[1] - ambient[1]) / mt + ambient[1];
float b = (rgb[2] - ambient[2]) / mt + ambient[2];
img->r(y, x) = r;
img->g(y, x) = g;
img->b(y, x) = b;
}
}
float oldmed;
findMinMaxPercentile(Y, Y.width() * Y.height(), 0.5, oldmed, 0.5, oldmed, multiThread);
get_luminance(img, Y, ws, multiThread);
float newmed;
findMinMaxPercentile(Y, Y.width() * Y.height(), 0.5, newmed, 0.5, newmed, multiThread);
if (newmed > 1e-5f) {
const float f1 = oldmed / newmed;
const float f = f1 * 65535.f;
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
float r = img->r(y, x);
float g = img->g(y, x);
float b = img->b(y, x);
float h, s, l;
Color::rgb2hslfloat(r * f, g * f, b * f, h, s, l);
s = LIM01(s / f1);
Color::hsl2rgbfloat(h, s, l, img->r(y, x), img->g(y, x), img->b(y, x));
img->r(y, x) = r;
img->g(y, x) = g;
img->b(y, x) = b;
}
}
} else {
img->normalizeFloatTo65535();
}
img->normalizeFloatTo65535();
}